保守的真菌Knr4/Smi1蛋白在维持细胞壁耐受性和寄主植物发病机制中至关重要。

IF 5.5 1区 医学 Q1 MICROBIOLOGY
PLoS Pathogens Pub Date : 2025-01-09 eCollection Date: 2025-01-01 DOI:10.1371/journal.ppat.1012769
Erika Kroll, Carlos Bayon, Jason Rudd, Victoria J Armer, Anjana Magaji-Umashankar, Ryan Ames, Martin Urban, Neil A Brown, Kim Hammond-Kosack
{"title":"保守的真菌Knr4/Smi1蛋白在维持细胞壁耐受性和寄主植物发病机制中至关重要。","authors":"Erika Kroll, Carlos Bayon, Jason Rudd, Victoria J Armer, Anjana Magaji-Umashankar, Ryan Ames, Martin Urban, Neil A Brown, Kim Hammond-Kosack","doi":"10.1371/journal.ppat.1012769","DOIUrl":null,"url":null,"abstract":"<p><p>Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module (F12) that exhibited a significant correlation with a detoxification gene-enriched wheat module (W12). This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection that was correlated to a wheat module enriched in oxidative stress genes, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including oxidative stress tolerance, cell cycle stress tolerance, morphogenesis, growth, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of the FgKnr4 gene are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici. Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 1","pages":"e1012769"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717356/pdf/","citationCount":"0","resultStr":"{\"title\":\"A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.\",\"authors\":\"Erika Kroll, Carlos Bayon, Jason Rudd, Victoria J Armer, Anjana Magaji-Umashankar, Ryan Ames, Martin Urban, Neil A Brown, Kim Hammond-Kosack\",\"doi\":\"10.1371/journal.ppat.1012769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module (F12) that exhibited a significant correlation with a detoxification gene-enriched wheat module (W12). This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection that was correlated to a wheat module enriched in oxidative stress genes, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including oxidative stress tolerance, cell cycle stress tolerance, morphogenesis, growth, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of the FgKnr4 gene are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici. Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"21 1\",\"pages\":\"e1012769\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717356/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012769\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012769","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丝状植物致病真菌对全球粮食安全构成重大威胁,特别是通过影响谷物的赤霉病(FHB)和小麦斑疹病(STB)等疾病。随着真菌控制面临的挑战越来越大,以及由于环境问题对杀菌剂使用的限制越来越多,迫切需要创新的控制策略。本文通过建立双加权基因共表达网络(WGCN),全面分析了小麦穗镰刀菌的阶段性侵染过程。值得注意的是,该网络包含一个富含真菌毒素的真菌模块(F12),该模块与富含解毒基因的小麦模块(W12)具有显著相关性。通过定量PCR验证了基因表达的相关性。通过检测在早期无症状感染期间与富含氧化应激基因的小麦模块相关的高表达基因的真菌模块,我们发现了一个编码FgKnr4的基因,这是一种含有Knr4/Smi1紊乱结构域的蛋白质。通过综合分析,我们证实了FgKnr4在多种生物学过程中的关键作用,包括氧化应激耐受性、细胞周期应激耐受性、形态发生、生长和致病性。进一步的研究证实,观察到的表型部分是由于FgKnr4通过调节map -激酶MGV1的磷酸化参与调节真菌细胞壁完整性途径。FgKnr4基因的同源物在真菌界广泛存在,但在其他真核生物中却不存在,这表明该蛋白具有作为有希望的干预靶点的潜力。令人鼓舞的是,ΔFgknr4的生长受限和毒力高度降低的表型在小麦真菌致病菌酵母(Zymoseptoria tritici)的同源基因缺失后得到了复制。总的来说,这项研究证明了综合网络水平分析方法的实用性,以查明对发病机制和疾病控制高度感兴趣的基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN). Notably, the network contained a mycotoxin-enriched fungal module (F12) that exhibited a significant correlation with a detoxification gene-enriched wheat module (W12). This correlation in gene expression was validated through quantitative PCR. By examining a fungal module with genes highly expressed during early symptomless infection that was correlated to a wheat module enriched in oxidative stress genes, we identified a gene encoding FgKnr4, a protein containing a Knr4/Smi1 disordered domain. Through comprehensive analysis, we confirmed the pivotal role of FgKnr4 in various biological processes, including oxidative stress tolerance, cell cycle stress tolerance, morphogenesis, growth, and pathogenicity. Further studies confirmed the observed phenotypes are partially due to the involvement of FgKnr4 in regulating the fungal cell wall integrity pathway by modulating the phosphorylation of the MAP-kinase MGV1. Orthologues of the FgKnr4 gene are widespread across the fungal kingdom but are absent in other Eukaryotes, suggesting the protein has potential as a promising intervention target. Encouragingly, the restricted growth and highly reduced virulence phenotypes observed for ΔFgknr4 were replicated upon deletion of the orthologous gene in the wheat fungal pathogen Zymoseptoria tritici. Overall, this study demonstrates the utility of an integrated network-level analytical approach to pinpoint genes of high interest to pathogenesis and disease control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens MICROBIOLOGY-PARASITOLOGY
自引率
3.00%
发文量
598
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信