用于皮肤癌高频不可逆电穿孔治疗的双极电极阵列的计算机建模和植物实验。

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Biomedical Engineering Letters Pub Date : 2024-09-12 eCollection Date: 2025-01-01 DOI:10.1007/s13534-024-00421-z
Ana González-Suárez, Cian Kerrigan, Jason McNamara, Seán Kinsella, Maeve Duffy
{"title":"用于皮肤癌高频不可逆电穿孔治疗的双极电极阵列的计算机建模和植物实验。","authors":"Ana González-Suárez, Cian Kerrigan, Jason McNamara, Seán Kinsella, Maeve Duffy","doi":"10.1007/s13534-024-00421-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Pulsed electrical field (PEF) ablation is an energy-based technique used to treat a range of cancers by irreversible electroporation (IRE). Our objective was to use computational and plant-based models to characterize the electric field distribution and ablation zones induced with a commercial 8-needle array-based applicator intended for treatment of skin cancer when high-frequency IRE (H-FIRE) pulses are applied. Electric field characterisation of this device was not previously assessed.</p><p><strong>Methods: </strong>Vegetable experimental were conducted using parallel plate electrodes to obtain the lethal threshold for H-FIRE pulses. Then a 3D computational model of the applicator was built mimicking the experimental conditions. The computational ablation zones were validated with the experiments for different voltage levels ranging from 220 to 525 V.</p><p><strong>Results: </strong>A threshold of 453 V/cm was estimated for H-FIRE pulses, which was used to predict computationally the ablation zones. It was found that the model showed a low prediction error, ranging from 2% for the minor diameter to 4.5% for the depth compared with experiments. Voltages higher than 370 V created an ablation volume with a rectangular prism shape determined by the positions of the needles, whereas lower voltages provoked the appearance of untreated areas (gaps).</p><p><strong>Conclusions: </strong>Our computer model predicts reasonably well the ablation zone induced by H-FIRE pulses, suggesting that a sufficiently large voltage must be applied to avoid the appearance of gaps. The validated model with vegetable experiments could serve as the basis for future computer studies to predict the behaviour of this device on heterogeneous tissues.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"15 1","pages":"69-79"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703801/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computer modelling and vegetable bench test of a bipolar electrode array intended for use in high frequency irreversible electroporation treatment of skin cancer.\",\"authors\":\"Ana González-Suárez, Cian Kerrigan, Jason McNamara, Seán Kinsella, Maeve Duffy\",\"doi\":\"10.1007/s13534-024-00421-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Pulsed electrical field (PEF) ablation is an energy-based technique used to treat a range of cancers by irreversible electroporation (IRE). Our objective was to use computational and plant-based models to characterize the electric field distribution and ablation zones induced with a commercial 8-needle array-based applicator intended for treatment of skin cancer when high-frequency IRE (H-FIRE) pulses are applied. Electric field characterisation of this device was not previously assessed.</p><p><strong>Methods: </strong>Vegetable experimental were conducted using parallel plate electrodes to obtain the lethal threshold for H-FIRE pulses. Then a 3D computational model of the applicator was built mimicking the experimental conditions. The computational ablation zones were validated with the experiments for different voltage levels ranging from 220 to 525 V.</p><p><strong>Results: </strong>A threshold of 453 V/cm was estimated for H-FIRE pulses, which was used to predict computationally the ablation zones. It was found that the model showed a low prediction error, ranging from 2% for the minor diameter to 4.5% for the depth compared with experiments. Voltages higher than 370 V created an ablation volume with a rectangular prism shape determined by the positions of the needles, whereas lower voltages provoked the appearance of untreated areas (gaps).</p><p><strong>Conclusions: </strong>Our computer model predicts reasonably well the ablation zone induced by H-FIRE pulses, suggesting that a sufficiently large voltage must be applied to avoid the appearance of gaps. The validated model with vegetable experiments could serve as the basis for future computer studies to predict the behaviour of this device on heterogeneous tissues.</p>\",\"PeriodicalId\":46898,\"journal\":{\"name\":\"Biomedical Engineering Letters\",\"volume\":\"15 1\",\"pages\":\"69-79\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703801/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Engineering Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13534-024-00421-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-024-00421-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:脉冲电场(PEF)消融是一种基于能量的技术,用于通过不可逆电穿孔(IRE)治疗一系列癌症。我们的目标是使用计算模型和基于植物的模型来表征在使用高频IRE (H-FIRE)脉冲治疗皮肤癌时,使用基于8针阵列的商用涂抹器诱导的电场分布和消融区域。该装置的电场特性以前没有评估过。方法:采用平行平板电极进行蔬菜实验,获得H-FIRE脉冲的致死阈值。然后,模拟实验条件,建立了施药器的三维计算模型。在220 ~ 525 V电压范围内,通过实验验证了计算的烧蚀区。结果:H-FIRE脉冲的阈值估计为453 V/cm,用于计算预测烧蚀区。与实验结果相比,该模型的预测误差较低,小直径预测误差为2%,深度预测误差为4.5%。高于370v的电压会产生由针的位置决定的矩形棱柱形状的烧蚀体积,而较低的电压会引起未处理区域(间隙)的出现。结论:我们的计算机模型相当好地预测了H-FIRE脉冲引起的烧蚀区,表明必须施加足够大的电压以避免出现间隙。通过蔬菜实验验证的模型可以作为未来计算机研究的基础,以预测该装置在异质组织上的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computer modelling and vegetable bench test of a bipolar electrode array intended for use in high frequency irreversible electroporation treatment of skin cancer.

Purpose: Pulsed electrical field (PEF) ablation is an energy-based technique used to treat a range of cancers by irreversible electroporation (IRE). Our objective was to use computational and plant-based models to characterize the electric field distribution and ablation zones induced with a commercial 8-needle array-based applicator intended for treatment of skin cancer when high-frequency IRE (H-FIRE) pulses are applied. Electric field characterisation of this device was not previously assessed.

Methods: Vegetable experimental were conducted using parallel plate electrodes to obtain the lethal threshold for H-FIRE pulses. Then a 3D computational model of the applicator was built mimicking the experimental conditions. The computational ablation zones were validated with the experiments for different voltage levels ranging from 220 to 525 V.

Results: A threshold of 453 V/cm was estimated for H-FIRE pulses, which was used to predict computationally the ablation zones. It was found that the model showed a low prediction error, ranging from 2% for the minor diameter to 4.5% for the depth compared with experiments. Voltages higher than 370 V created an ablation volume with a rectangular prism shape determined by the positions of the needles, whereas lower voltages provoked the appearance of untreated areas (gaps).

Conclusions: Our computer model predicts reasonably well the ablation zone induced by H-FIRE pulses, suggesting that a sufficiently large voltage must be applied to avoid the appearance of gaps. The validated model with vegetable experiments could serve as the basis for future computer studies to predict the behaviour of this device on heterogeneous tissues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Engineering Letters
Biomedical Engineering Letters ENGINEERING, BIOMEDICAL-
CiteScore
6.80
自引率
0.00%
发文量
34
期刊介绍: Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信