基于Cs-137细胞辐照器的准直系统对小鼠辐照过程中设置误差对剂量传递影响的计算机评价。

IF 2.4 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Amir Entezam, Andrew Fielding, Gishan Ratnayake, Davide Fontanarosa
{"title":"基于Cs-137细胞辐照器的准直系统对小鼠辐照过程中设置误差对剂量传递影响的计算机评价。","authors":"Amir Entezam, Andrew Fielding, Gishan Ratnayake, Davide Fontanarosa","doi":"10.1007/s13246-024-01486-x","DOIUrl":null,"url":null,"abstract":"<p><p>Set-up errors are a problem for pre-clinical irradiators that lack imaging capabilities. The aim of this study was to investigate the impact of the potential set-up errors on the dose distribution for a mouse with a xenographic tumour irradiated with a standard Cs-137 cell irradiator equipped with an in-house lead collimator with 10 mm diameter apertures. The EGSnrc Monte-Carlo (MC) code was used to simulate the potential errors caused by displacements of the mouse in the irradiation setup. The impact of the simulated set-up displacements on the dose delivered to the xenographic tumour and surrounding organs was assessed. MC dose calculations were performed in a Computed Tomography (CT) derived model of the mouse for the reference position of the tumour in the irradiation setup. The errors were added into the CT data and then the mouse doses for the corresponding shifts were recalculated and dose volume histograms (DVHs) were generated. The investigation was performed for 1 cm and 0.5 cm diameter tumours. The DVH resulting from introducing the maximum setup errors for 1 cm diameter tumours showed up to 35% reduced dose to a significant fraction of the tumour volume. The setup errors demonstrated an insignificant effect on doses for 0.5 cm diameter tumour irradiations. Setup errors were observed to have negligible impact on out of field doses to organs at risk. The dosimetric results presented herein verify the robustness of our collimator system for irradiations of xenograft tumours up to 0.5 cm diameter in the presence of the maximum setup errors.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-silico evaluation of the effect of set-up errors on dose delivery during mouse irradiations with a Cs-137 cell irradiator-based collimator system.\",\"authors\":\"Amir Entezam, Andrew Fielding, Gishan Ratnayake, Davide Fontanarosa\",\"doi\":\"10.1007/s13246-024-01486-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Set-up errors are a problem for pre-clinical irradiators that lack imaging capabilities. The aim of this study was to investigate the impact of the potential set-up errors on the dose distribution for a mouse with a xenographic tumour irradiated with a standard Cs-137 cell irradiator equipped with an in-house lead collimator with 10 mm diameter apertures. The EGSnrc Monte-Carlo (MC) code was used to simulate the potential errors caused by displacements of the mouse in the irradiation setup. The impact of the simulated set-up displacements on the dose delivered to the xenographic tumour and surrounding organs was assessed. MC dose calculations were performed in a Computed Tomography (CT) derived model of the mouse for the reference position of the tumour in the irradiation setup. The errors were added into the CT data and then the mouse doses for the corresponding shifts were recalculated and dose volume histograms (DVHs) were generated. The investigation was performed for 1 cm and 0.5 cm diameter tumours. The DVH resulting from introducing the maximum setup errors for 1 cm diameter tumours showed up to 35% reduced dose to a significant fraction of the tumour volume. The setup errors demonstrated an insignificant effect on doses for 0.5 cm diameter tumour irradiations. Setup errors were observed to have negligible impact on out of field doses to organs at risk. The dosimetric results presented herein verify the robustness of our collimator system for irradiations of xenograft tumours up to 0.5 cm diameter in the presence of the maximum setup errors.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-024-01486-x\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-024-01486-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

对于缺乏成像能力的临床前照射机来说,设置错误是一个问题。本研究的目的是研究潜在的设置误差对小鼠异种肿瘤的剂量分布的影响,用标准的Cs-137细胞辐照器照射,配备一个直径为10毫米的内部铅准直器。使用EGSnrc蒙特卡罗(MC)代码模拟照射装置中小鼠位移引起的潜在误差。模拟装置位移对剂量传递到异种肿瘤和周围器官的影响进行了评估。在计算机断层扫描(CT)导出的小鼠模型中进行MC剂量计算,以确定肿瘤在照射设置中的参考位置。将误差值加入到CT数据中,重新计算相应偏移的小鼠剂量,生成剂量-体积直方图(DVHs)。肿瘤直径分别为1cm和0.5 cm。引入最大设置误差对直径为1厘米的肿瘤产生的DVH显示,对肿瘤体积的很大一部分,剂量减少了35%。设置误差对0.5 cm直径肿瘤照射剂量的影响不显著。观察到设置错误对处于危险中的器官的外场剂量的影响可以忽略不计。本文提出的剂量学结果验证了我们的准直系统在存在最大设置误差的情况下照射直径达0.5 cm的异种移植物肿瘤的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-silico evaluation of the effect of set-up errors on dose delivery during mouse irradiations with a Cs-137 cell irradiator-based collimator system.

Set-up errors are a problem for pre-clinical irradiators that lack imaging capabilities. The aim of this study was to investigate the impact of the potential set-up errors on the dose distribution for a mouse with a xenographic tumour irradiated with a standard Cs-137 cell irradiator equipped with an in-house lead collimator with 10 mm diameter apertures. The EGSnrc Monte-Carlo (MC) code was used to simulate the potential errors caused by displacements of the mouse in the irradiation setup. The impact of the simulated set-up displacements on the dose delivered to the xenographic tumour and surrounding organs was assessed. MC dose calculations were performed in a Computed Tomography (CT) derived model of the mouse for the reference position of the tumour in the irradiation setup. The errors were added into the CT data and then the mouse doses for the corresponding shifts were recalculated and dose volume histograms (DVHs) were generated. The investigation was performed for 1 cm and 0.5 cm diameter tumours. The DVH resulting from introducing the maximum setup errors for 1 cm diameter tumours showed up to 35% reduced dose to a significant fraction of the tumour volume. The setup errors demonstrated an insignificant effect on doses for 0.5 cm diameter tumour irradiations. Setup errors were observed to have negligible impact on out of field doses to organs at risk. The dosimetric results presented herein verify the robustness of our collimator system for irradiations of xenograft tumours up to 0.5 cm diameter in the presence of the maximum setup errors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信