来源特征影响人工智能支持的骨科文本简化:未来的建议。

IF 2.3 Q2 ORTHOPEDICS
JBJS Open Access Pub Date : 2025-01-08 eCollection Date: 2025-01-01 DOI:10.2106/JBJS.OA.24.00007
Saman Andalib, Sean S Solomon, Bryce G Picton, Aidin C Spina, John A Scolaro, Ariana M Nelson
{"title":"来源特征影响人工智能支持的骨科文本简化:未来的建议。","authors":"Saman Andalib, Sean S Solomon, Bryce G Picton, Aidin C Spina, John A Scolaro, Ariana M Nelson","doi":"10.2106/JBJS.OA.24.00007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study assesses the effectiveness of large language models (LLMs) in simplifying complex language within orthopaedic patient education materials (PEMs) and identifies predictive factors for successful text transformation.</p><p><strong>Methods: </strong>We transformed 48 orthopaedic PEMs using GPT-4, GPT-3.5, Claude 2, and Llama 2. The readability, quantified by the Flesch-Kincaid Reading Ease (FKRE) and Flesch-Kincaid Grade Level (FKGL) scores, was measured before and after transformation. Analysis included text characteristics such as syllable count, word length, and sentence length. Statistical and machine learning methods evaluated the correlations and predictive capacity of these features for transformation success.</p><p><strong>Results: </strong>All LLMs improved FKRE and FKGL scores (p < 0.01). GPT-4 showed superior performance, transforming PEMs to a seventh-grade reading level (mean FKGL, 6.72 ± 0.99), with higher FKRE and lower FKGL than other models. GPT-3.5, Claude 2, and Llama 2 significantly shortened sentences and overall text length (p < 0.01). Importantly, correlation analysis revealed that transformation success varied substantially with the model used, depending on original text factors such as word length and sentence complexity.</p><p><strong>Conclusions: </strong>LLMs successfully simplify orthopaedic PEMs, with GPT-4 leading in readability improvement. This study highlights the importance of initial text characteristics in determining the effectiveness of LLM transformations, offering insights for optimizing orthopaedic health literacy initiatives using artificial intelligence (AI).</p><p><strong>Clinical relevance: </strong>This study provides critical insights into the ability of LLMs to simplify complex orthopaedic PEMs, enhancing their readability without compromising informational integrity. By identifying predictive factors for successful text transformation, this research supports the application of AI in improving health literacy, potentially leading to better patient comprehension and outcomes in orthopaedic care.</p>","PeriodicalId":36492,"journal":{"name":"JBJS Open Access","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703440/pdf/","citationCount":"0","resultStr":"{\"title\":\"Source Characteristics Influence AI-Enabled Orthopaedic Text Simplification: Recommendations for the Future.\",\"authors\":\"Saman Andalib, Sean S Solomon, Bryce G Picton, Aidin C Spina, John A Scolaro, Ariana M Nelson\",\"doi\":\"10.2106/JBJS.OA.24.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>This study assesses the effectiveness of large language models (LLMs) in simplifying complex language within orthopaedic patient education materials (PEMs) and identifies predictive factors for successful text transformation.</p><p><strong>Methods: </strong>We transformed 48 orthopaedic PEMs using GPT-4, GPT-3.5, Claude 2, and Llama 2. The readability, quantified by the Flesch-Kincaid Reading Ease (FKRE) and Flesch-Kincaid Grade Level (FKGL) scores, was measured before and after transformation. Analysis included text characteristics such as syllable count, word length, and sentence length. Statistical and machine learning methods evaluated the correlations and predictive capacity of these features for transformation success.</p><p><strong>Results: </strong>All LLMs improved FKRE and FKGL scores (p < 0.01). GPT-4 showed superior performance, transforming PEMs to a seventh-grade reading level (mean FKGL, 6.72 ± 0.99), with higher FKRE and lower FKGL than other models. GPT-3.5, Claude 2, and Llama 2 significantly shortened sentences and overall text length (p < 0.01). Importantly, correlation analysis revealed that transformation success varied substantially with the model used, depending on original text factors such as word length and sentence complexity.</p><p><strong>Conclusions: </strong>LLMs successfully simplify orthopaedic PEMs, with GPT-4 leading in readability improvement. This study highlights the importance of initial text characteristics in determining the effectiveness of LLM transformations, offering insights for optimizing orthopaedic health literacy initiatives using artificial intelligence (AI).</p><p><strong>Clinical relevance: </strong>This study provides critical insights into the ability of LLMs to simplify complex orthopaedic PEMs, enhancing their readability without compromising informational integrity. By identifying predictive factors for successful text transformation, this research supports the application of AI in improving health literacy, potentially leading to better patient comprehension and outcomes in orthopaedic care.</p>\",\"PeriodicalId\":36492,\"journal\":{\"name\":\"JBJS Open Access\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11703440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JBJS Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2106/JBJS.OA.24.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ORTHOPEDICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JBJS Open Access","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2106/JBJS.OA.24.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

摘要

背景:本研究评估了大型语言模型(llm)在简化骨科患者教育材料(PEMs)中的复杂语言方面的有效性,并确定了成功文本转换的预测因素。方法:使用GPT-4、GPT-3.5、Claude 2和Llama 2对48例骨科PEMs进行转化。以Flesch-Kincaid Reading Ease (FKRE)和Flesch-Kincaid Grade Level (FKGL)评分量化转化前后的可读性。分析包括文本特征,如音节数、单词长度和句子长度。统计和机器学习方法评估了这些特征对转换成功的相关性和预测能力。结果:所有LLMs均能改善FKRE和FKGL评分(p < 0.01)。GPT-4表现优异,将PEMs的阅读水平提高到七年级(平均FKGL, 6.72±0.99),FKRE高于其他模型,FKGL低于其他模型。GPT-3.5、Claude 2和Llama 2显著缩短句子和文本总长度(p < 0.01)。重要的是,相关分析显示,转换成功与使用的模型有很大的不同,这取决于原始文本因素,如单词长度和句子复杂性。结论:llm成功地简化了骨科PEMs, GPT-4在可读性提高方面领先。本研究强调了初始文本特征在确定法学硕士转换有效性方面的重要性,为使用人工智能(AI)优化骨科健康素养计划提供了见解。临床相关性:本研究为llm简化复杂骨科PEMs的能力提供了重要见解,在不影响信息完整性的情况下提高了其可读性。通过确定成功文本转换的预测因素,本研究支持人工智能在提高健康素养方面的应用,从而可能导致更好的患者理解和骨科护理结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Source Characteristics Influence AI-Enabled Orthopaedic Text Simplification: Recommendations for the Future.

Background: This study assesses the effectiveness of large language models (LLMs) in simplifying complex language within orthopaedic patient education materials (PEMs) and identifies predictive factors for successful text transformation.

Methods: We transformed 48 orthopaedic PEMs using GPT-4, GPT-3.5, Claude 2, and Llama 2. The readability, quantified by the Flesch-Kincaid Reading Ease (FKRE) and Flesch-Kincaid Grade Level (FKGL) scores, was measured before and after transformation. Analysis included text characteristics such as syllable count, word length, and sentence length. Statistical and machine learning methods evaluated the correlations and predictive capacity of these features for transformation success.

Results: All LLMs improved FKRE and FKGL scores (p < 0.01). GPT-4 showed superior performance, transforming PEMs to a seventh-grade reading level (mean FKGL, 6.72 ± 0.99), with higher FKRE and lower FKGL than other models. GPT-3.5, Claude 2, and Llama 2 significantly shortened sentences and overall text length (p < 0.01). Importantly, correlation analysis revealed that transformation success varied substantially with the model used, depending on original text factors such as word length and sentence complexity.

Conclusions: LLMs successfully simplify orthopaedic PEMs, with GPT-4 leading in readability improvement. This study highlights the importance of initial text characteristics in determining the effectiveness of LLM transformations, offering insights for optimizing orthopaedic health literacy initiatives using artificial intelligence (AI).

Clinical relevance: This study provides critical insights into the ability of LLMs to simplify complex orthopaedic PEMs, enhancing their readability without compromising informational integrity. By identifying predictive factors for successful text transformation, this research supports the application of AI in improving health literacy, potentially leading to better patient comprehension and outcomes in orthopaedic care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JBJS Open Access
JBJS Open Access Medicine-Surgery
CiteScore
5.00
自引率
0.00%
发文量
77
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信