指定转录因子调控的细胞环境,探索环境特异性基因调控程序。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-01-07 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqae178
Mariia Minaeva, Júlia Domingo, Philipp Rentzsch, Tuuli Lappalainen
{"title":"指定转录因子调控的细胞环境,探索环境特异性基因调控程序。","authors":"Mariia Minaeva, Júlia Domingo, Philipp Rentzsch, Tuuli Lappalainen","doi":"10.1093/nargab/lqae178","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the role of transcription and transcription factors (TFs) in cellular identity and disease, such as cancer, is essential. However, comprehensive data resources for cell line-specific TF-to-target gene annotations are currently limited. To address this, we employed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels. By integrating cellular transcriptome and TF binding data, we generated regulons for 40 common cell lines comprising both proximal and distal cell line-specific regulatory events. Through systematic benchmarking involving TF knockout experiments, we demonstrated performance on par with state-of-the-art methods, with our method being easily applicable to other cell types of interest. We present case studies using three cancer single-cell datasets to showcase the utility of these cell-type-specific regulons in exploring transcriptional dysregulation. In summary, this study provides a valuable pipeline and a resource for systematically exploring cell line-specific transcriptional regulations, emphasizing the utility of network analysis in deciphering disease mechanisms.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqae178"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704787/pdf/","citationCount":"0","resultStr":"{\"title\":\"Specifying cellular context of transcription factor regulons for exploring context-specific gene regulation programs.\",\"authors\":\"Mariia Minaeva, Júlia Domingo, Philipp Rentzsch, Tuuli Lappalainen\",\"doi\":\"10.1093/nargab/lqae178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the role of transcription and transcription factors (TFs) in cellular identity and disease, such as cancer, is essential. However, comprehensive data resources for cell line-specific TF-to-target gene annotations are currently limited. To address this, we employed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels. By integrating cellular transcriptome and TF binding data, we generated regulons for 40 common cell lines comprising both proximal and distal cell line-specific regulatory events. Through systematic benchmarking involving TF knockout experiments, we demonstrated performance on par with state-of-the-art methods, with our method being easily applicable to other cell types of interest. We present case studies using three cancer single-cell datasets to showcase the utility of these cell-type-specific regulons in exploring transcriptional dysregulation. In summary, this study provides a valuable pipeline and a resource for systematically exploring cell line-specific transcriptional regulations, emphasizing the utility of network analysis in deciphering disease mechanisms.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"7 1\",\"pages\":\"lqae178\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704787/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

了解转录和转录因子(tf)在细胞身份和疾病(如癌症)中的作用是至关重要的。然而,细胞系特异性TF-to-target基因注释的综合数据资源目前有限。为了解决这个问题,我们采用了一种简单的方法来定义捕获TF结合和转录物表达水平的细胞特异性方面的规则。通过整合细胞转录组和TF结合数据,我们生成了40种常见细胞系的调控,包括近端和远端细胞系特异性调控事件。通过涉及TF敲除实验的系统基准测试,我们证明了与最先进的方法相当的性能,我们的方法很容易适用于其他感兴趣的细胞类型。我们提出了使用三种癌症单细胞数据集的案例研究,以展示这些细胞类型特异性调控在探索转录失调中的效用。总之,本研究为系统探索细胞系特异性转录调控提供了有价值的途径和资源,强调了网络分析在破译疾病机制中的效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specifying cellular context of transcription factor regulons for exploring context-specific gene regulation programs.

Understanding the role of transcription and transcription factors (TFs) in cellular identity and disease, such as cancer, is essential. However, comprehensive data resources for cell line-specific TF-to-target gene annotations are currently limited. To address this, we employed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels. By integrating cellular transcriptome and TF binding data, we generated regulons for 40 common cell lines comprising both proximal and distal cell line-specific regulatory events. Through systematic benchmarking involving TF knockout experiments, we demonstrated performance on par with state-of-the-art methods, with our method being easily applicable to other cell types of interest. We present case studies using three cancer single-cell datasets to showcase the utility of these cell-type-specific regulons in exploring transcriptional dysregulation. In summary, this study provides a valuable pipeline and a resource for systematically exploring cell line-specific transcriptional regulations, emphasizing the utility of network analysis in deciphering disease mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信