ProPr54 web服务器:用混合卷积和循环深度神经网络预测σ54启动子和调控子。

IF 4 Q1 GENETICS & HEREDITY
NAR Genomics and Bioinformatics Pub Date : 2025-01-07 eCollection Date: 2025-03-01 DOI:10.1093/nargab/lqae188
Tristan Achterberg, Anne de Jong
{"title":"ProPr54 web服务器:用混合卷积和循环深度神经网络预测σ54启动子和调控子。","authors":"Tristan Achterberg, Anne de Jong","doi":"10.1093/nargab/lqae188","DOIUrl":null,"url":null,"abstract":"<p><p>σ<sup>54</sup> serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ<sup>54</sup> is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ<sup>54</sup> promoters and regulon in bacterial genomes. Here, we report a σ<sup>54</sup> promoter prediction method ProPr54, based on a convolutional neural network trained on a set of 446 validated σ<sup>54</sup> binding sites derived from 33 bacterial species. Model performance was tested and compared with respect to bacterial intergenic regions, demonstrating robust applicability. ProPr54 exhibits high performance when tested on various bacterial species, highly surpassing other available σ<sup>54</sup> regulon identification methods. Furthermore, analysis on bacterial genomes, which have no experimentally validated σ<sup>54</sup> binding sites, demonstrates the generalization of the model. ProPr54 is the first reliable <i>in</i> <i>silico</i> method for predicting σ<sup>54</sup> binding sites, making it a valuable tool to support experimental studies on σ<sup>54</sup>. In conclusion, ProPr54 offers a reliable, broadly applicable tool for predicting σ<sup>54</sup> promoters and regulon genes in bacterial genome sequences. A web server is freely accessible at http://propr54.molgenrug.nl.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqae188"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704786/pdf/","citationCount":"0","resultStr":"{\"title\":\"ProPr54 web server: predicting σ<sup>54</sup> promoters and regulon with a hybrid convolutional and recurrent deep neural network.\",\"authors\":\"Tristan Achterberg, Anne de Jong\",\"doi\":\"10.1093/nargab/lqae188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>σ<sup>54</sup> serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ<sup>54</sup> is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ<sup>54</sup> promoters and regulon in bacterial genomes. Here, we report a σ<sup>54</sup> promoter prediction method ProPr54, based on a convolutional neural network trained on a set of 446 validated σ<sup>54</sup> binding sites derived from 33 bacterial species. Model performance was tested and compared with respect to bacterial intergenic regions, demonstrating robust applicability. ProPr54 exhibits high performance when tested on various bacterial species, highly surpassing other available σ<sup>54</sup> regulon identification methods. Furthermore, analysis on bacterial genomes, which have no experimentally validated σ<sup>54</sup> binding sites, demonstrates the generalization of the model. ProPr54 is the first reliable <i>in</i> <i>silico</i> method for predicting σ<sup>54</sup> binding sites, making it a valuable tool to support experimental studies on σ<sup>54</sup>. In conclusion, ProPr54 offers a reliable, broadly applicable tool for predicting σ<sup>54</sup> promoters and regulon genes in bacterial genome sequences. A web server is freely accessible at http://propr54.molgenrug.nl.</p>\",\"PeriodicalId\":33994,\"journal\":{\"name\":\"NAR Genomics and Bioinformatics\",\"volume\":\"7 1\",\"pages\":\"lqae188\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704786/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAR Genomics and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/nargab/lqae188\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

σ54是一个非常规的sigma因子,其转录启动机制不同,这取决于转录激活子的参与。这种独特的sigma因子σ54对于调控氮调控、鞭毛生物合成、运动性、趋化性和各种其他基本细胞过程至关重要的基因的转录是必不可少的。目前,还没有全面的工具来测定细菌基因组中的σ54启动子和调控子。本文提出了一种基于卷积神经网络的σ54启动子预测方法ProPr54,该方法对来自33种细菌的446个经过验证的σ54结合位点进行了训练。对模型性能进行了测试,并对细菌基因间区域进行了比较,证明了强大的适用性。在对多种细菌的检测中,ProPr54表现出优异的性能,大大超过了其他现有的σ54规则识别方法。此外,对没有经过实验验证的σ54结合位点的细菌基因组进行了分析,验证了该模型的通用性。ProPr54是第一个可靠的预测σ54结合位点的计算机方法,为支持σ54的实验研究提供了有价值的工具。总之,ProPr54为预测细菌基因组序列中的σ54启动子和调控基因提供了一个可靠的、广泛适用的工具。web服务器可以在http://propr54.molgenrug.nl上免费访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ProPr54 web server: predicting σ54 promoters and regulon with a hybrid convolutional and recurrent deep neural network.

σ54 serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ54 is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ54 promoters and regulon in bacterial genomes. Here, we report a σ54 promoter prediction method ProPr54, based on a convolutional neural network trained on a set of 446 validated σ54 binding sites derived from 33 bacterial species. Model performance was tested and compared with respect to bacterial intergenic regions, demonstrating robust applicability. ProPr54 exhibits high performance when tested on various bacterial species, highly surpassing other available σ54 regulon identification methods. Furthermore, analysis on bacterial genomes, which have no experimentally validated σ54 binding sites, demonstrates the generalization of the model. ProPr54 is the first reliable in silico method for predicting σ54 binding sites, making it a valuable tool to support experimental studies on σ54. In conclusion, ProPr54 offers a reliable, broadly applicable tool for predicting σ54 promoters and regulon genes in bacterial genome sequences. A web server is freely accessible at http://propr54.molgenrug.nl.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信