{"title":"以印度为重点的塑料废物回收和再利用方法的综合审查。","authors":"Kishor Kalauni, Ajitanshu Vedrtnam, Sahendra P Sharma, Abhishek Sharma, Shashikant Chaturvedi","doi":"10.1177/0734242X241308499","DOIUrl":null,"url":null,"abstract":"<p><p>Plastics are integral to modern life but present significant environmental and economic challenges due to ineffective waste management systems. This article provides a comprehensive review of global plastic waste management (PWM) strategies, focusing on advancements in processing technologies, policy frameworks and their practical applications. It highlights the role of the World Intellectual Property Organization (WIPO) and regulatory bodies across the United States, Canada, Europe, Britain, India, Japan, Australia and China in fostering sustainable PWM practices. The study evaluates key processing techniques, including pyrolysis, gasification, supercritical water conversion, plasma-assisted processes, mechanical reprocessing and landfilling, emphasizing their technological advancements, limitations and scalability. Supercritical water conversion (operating at >374°C and 22.1 MPa) and plasma-assisted processing (using ionized gas at >3000°C) are identified as advanced methods capable of converting plastics into simpler molecules or valuable by-products. However, these technologies face challenges such as high energy requirements, operational costs and limited scalability. Persistent issues, including microplastic pollution, environmental impacts and the chemical-intensive nature of certain processes, are critically analysed. Drawing on extensive reviews of patents, case studies and real-world implementations, the study also examines the reuse potential of plastic by-products in diverse industries and evaluates state-level PWM initiatives in India. This review provides actionable insights for policymakers, researchers and industry stakeholders, highlighting critical gaps and opportunities to enhance the sustainability and scalability of PWM systems. By addressing persistent challenges, it contributes to advancing a circular economy for plastics and sustainable waste management practices globally.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"734242X241308499"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive review of recycling and reusing methods for plastic waste focusing Indian scenario.\",\"authors\":\"Kishor Kalauni, Ajitanshu Vedrtnam, Sahendra P Sharma, Abhishek Sharma, Shashikant Chaturvedi\",\"doi\":\"10.1177/0734242X241308499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plastics are integral to modern life but present significant environmental and economic challenges due to ineffective waste management systems. This article provides a comprehensive review of global plastic waste management (PWM) strategies, focusing on advancements in processing technologies, policy frameworks and their practical applications. It highlights the role of the World Intellectual Property Organization (WIPO) and regulatory bodies across the United States, Canada, Europe, Britain, India, Japan, Australia and China in fostering sustainable PWM practices. The study evaluates key processing techniques, including pyrolysis, gasification, supercritical water conversion, plasma-assisted processes, mechanical reprocessing and landfilling, emphasizing their technological advancements, limitations and scalability. Supercritical water conversion (operating at >374°C and 22.1 MPa) and plasma-assisted processing (using ionized gas at >3000°C) are identified as advanced methods capable of converting plastics into simpler molecules or valuable by-products. However, these technologies face challenges such as high energy requirements, operational costs and limited scalability. Persistent issues, including microplastic pollution, environmental impacts and the chemical-intensive nature of certain processes, are critically analysed. Drawing on extensive reviews of patents, case studies and real-world implementations, the study also examines the reuse potential of plastic by-products in diverse industries and evaluates state-level PWM initiatives in India. This review provides actionable insights for policymakers, researchers and industry stakeholders, highlighting critical gaps and opportunities to enhance the sustainability and scalability of PWM systems. By addressing persistent challenges, it contributes to advancing a circular economy for plastics and sustainable waste management practices globally.</p>\",\"PeriodicalId\":23671,\"journal\":{\"name\":\"Waste Management & Research\",\"volume\":\" \",\"pages\":\"734242X241308499\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Management & Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0734242X241308499\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X241308499","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A comprehensive review of recycling and reusing methods for plastic waste focusing Indian scenario.
Plastics are integral to modern life but present significant environmental and economic challenges due to ineffective waste management systems. This article provides a comprehensive review of global plastic waste management (PWM) strategies, focusing on advancements in processing technologies, policy frameworks and their practical applications. It highlights the role of the World Intellectual Property Organization (WIPO) and regulatory bodies across the United States, Canada, Europe, Britain, India, Japan, Australia and China in fostering sustainable PWM practices. The study evaluates key processing techniques, including pyrolysis, gasification, supercritical water conversion, plasma-assisted processes, mechanical reprocessing and landfilling, emphasizing their technological advancements, limitations and scalability. Supercritical water conversion (operating at >374°C and 22.1 MPa) and plasma-assisted processing (using ionized gas at >3000°C) are identified as advanced methods capable of converting plastics into simpler molecules or valuable by-products. However, these technologies face challenges such as high energy requirements, operational costs and limited scalability. Persistent issues, including microplastic pollution, environmental impacts and the chemical-intensive nature of certain processes, are critically analysed. Drawing on extensive reviews of patents, case studies and real-world implementations, the study also examines the reuse potential of plastic by-products in diverse industries and evaluates state-level PWM initiatives in India. This review provides actionable insights for policymakers, researchers and industry stakeholders, highlighting critical gaps and opportunities to enhance the sustainability and scalability of PWM systems. By addressing persistent challenges, it contributes to advancing a circular economy for plastics and sustainable waste management practices globally.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.