Liam N Nash, Fátima C Recalde, Timothy Chambers, Victor S Saito, Gustavo Q Romero, Pavel Kratina
{"title":"水陆联系推动了热带和温带森林生物多样性格局的对比。","authors":"Liam N Nash, Fátima C Recalde, Timothy Chambers, Victor S Saito, Gustavo Q Romero, Pavel Kratina","doi":"10.1098/rspb.2024.2423","DOIUrl":null,"url":null,"abstract":"<p><p>Riparian ecosystems harbour unique biodiversity because of their close interconnections with adjacent aquatic ecosystems. Yet, how aquatic ecosystems influence terrestrial biodiversity over different spatial scales is poorly understood, particularly in the tropics. We conducted field campaigns to collect 235 terrestrial invertebrate assemblages along 150 m transects from 47 streams in both Brazil and the UK, compiling one of the largest known datasets of riparian invertebrate community composition at multiple spatial scales. Invertebrate densities increased towards water in both regions. In Brazil, this was driven by an increase in spiders, with a corresponding decrease in non-predators, resulting in higher predator : prey ratios near water. In the UK, non-predator densities increased towards water, decreasing predator : prey ratios. While pairwise dissimilarity increased with distance from water in both regions, β-diversity was significantly higher in tropical assemblages, with more β-diversity explained by turnover. Spider community composition was significantly structured by distance from water in the Brazilian sites, suggesting tropical assemblages were influenced more by emerging aquatic prey, with a distinct spider community replacing other predators, with possible top-down control of terrestrial prey. High turnover-driven dissimilarity among tropical assemblages suggests that Brazilian riparian ecosystems are better managed at the landscape scale, with an emphasis on in-stream measures preventing disruption of aquatic resource subsidies.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2038","pages":"20242423"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706639/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aquatic-terrestrial linkages drive contrasting biodiversity patterns in tropical and temperate forests.\",\"authors\":\"Liam N Nash, Fátima C Recalde, Timothy Chambers, Victor S Saito, Gustavo Q Romero, Pavel Kratina\",\"doi\":\"10.1098/rspb.2024.2423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Riparian ecosystems harbour unique biodiversity because of their close interconnections with adjacent aquatic ecosystems. Yet, how aquatic ecosystems influence terrestrial biodiversity over different spatial scales is poorly understood, particularly in the tropics. We conducted field campaigns to collect 235 terrestrial invertebrate assemblages along 150 m transects from 47 streams in both Brazil and the UK, compiling one of the largest known datasets of riparian invertebrate community composition at multiple spatial scales. Invertebrate densities increased towards water in both regions. In Brazil, this was driven by an increase in spiders, with a corresponding decrease in non-predators, resulting in higher predator : prey ratios near water. In the UK, non-predator densities increased towards water, decreasing predator : prey ratios. While pairwise dissimilarity increased with distance from water in both regions, β-diversity was significantly higher in tropical assemblages, with more β-diversity explained by turnover. Spider community composition was significantly structured by distance from water in the Brazilian sites, suggesting tropical assemblages were influenced more by emerging aquatic prey, with a distinct spider community replacing other predators, with possible top-down control of terrestrial prey. High turnover-driven dissimilarity among tropical assemblages suggests that Brazilian riparian ecosystems are better managed at the landscape scale, with an emphasis on in-stream measures preventing disruption of aquatic resource subsidies.</p>\",\"PeriodicalId\":20589,\"journal\":{\"name\":\"Proceedings of the Royal Society B: Biological Sciences\",\"volume\":\"292 2038\",\"pages\":\"20242423\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706639/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society B: Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2024.2423\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2423","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Aquatic-terrestrial linkages drive contrasting biodiversity patterns in tropical and temperate forests.
Riparian ecosystems harbour unique biodiversity because of their close interconnections with adjacent aquatic ecosystems. Yet, how aquatic ecosystems influence terrestrial biodiversity over different spatial scales is poorly understood, particularly in the tropics. We conducted field campaigns to collect 235 terrestrial invertebrate assemblages along 150 m transects from 47 streams in both Brazil and the UK, compiling one of the largest known datasets of riparian invertebrate community composition at multiple spatial scales. Invertebrate densities increased towards water in both regions. In Brazil, this was driven by an increase in spiders, with a corresponding decrease in non-predators, resulting in higher predator : prey ratios near water. In the UK, non-predator densities increased towards water, decreasing predator : prey ratios. While pairwise dissimilarity increased with distance from water in both regions, β-diversity was significantly higher in tropical assemblages, with more β-diversity explained by turnover. Spider community composition was significantly structured by distance from water in the Brazilian sites, suggesting tropical assemblages were influenced more by emerging aquatic prey, with a distinct spider community replacing other predators, with possible top-down control of terrestrial prey. High turnover-driven dissimilarity among tropical assemblages suggests that Brazilian riparian ecosystems are better managed at the landscape scale, with an emphasis on in-stream measures preventing disruption of aquatic resource subsidies.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.