STIPS算法可以跟踪迷宫模式,揭示肌动蛋白微脊的独特节奏动态。

IF 2 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rajasekaran Bhavna, Mahendra Sonawane
{"title":"STIPS算法可以跟踪迷宫模式,揭示肌动蛋白微脊的独特节奏动态。","authors":"Rajasekaran Bhavna, Mahendra Sonawane","doi":"10.1088/1478-3975/ada862","DOIUrl":null,"url":null,"abstract":"<p><p>Tracking and motion analyses of semi-flexible biopolymer networks from time-lapse microscopy images are important tools that enable quantitative measurements to unravel the dynamic and mechanical properties of biopolymers in living tissues, crucial for understanding their organization and function. Biopolymer networks are challenging to track due to continuous stochastic transitions, such as merges and splits, which cause local neighborhood rearrangements over short time and length scales. To address this, we propose the Spatio Temporal Information on Pixel Subsets algorithm to track these events by creating pixel subsets that link trajectories across frames. Using this method, we analyzed actin-enriched protrusions, or 'microridges,' which form dynamic labyrinthine patterns on squamous cell epithelial surfaces, mimicking 'active Turing-patterns.' Our results reveal two distinct actomyosin-based rhythmic dynamics in neighboring cells: a common pulsatile mechanism between 2 and 6.25 min period governing both fusion and fission events contributing to pattern maintenance, and cell area pulses predominantly exhibiting 10 min period.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STIPS algorithm enables tracking labyrinthine patterns and reveals distinct rhythmic dynamics of actin microridges.\",\"authors\":\"Rajasekaran Bhavna, Mahendra Sonawane\",\"doi\":\"10.1088/1478-3975/ada862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tracking and motion analyses of semi-flexible biopolymer networks from time-lapse microscopy images are important tools that enable quantitative measurements to unravel the dynamic and mechanical properties of biopolymers in living tissues, crucial for understanding their organization and function. Biopolymer networks are challenging to track due to continuous stochastic transitions, such as merges and splits, which cause local neighborhood rearrangements over short time and length scales. To address this, we propose the Spatio Temporal Information on Pixel Subsets algorithm to track these events by creating pixel subsets that link trajectories across frames. Using this method, we analyzed actin-enriched protrusions, or 'microridges,' which form dynamic labyrinthine patterns on squamous cell epithelial surfaces, mimicking 'active Turing-patterns.' Our results reveal two distinct actomyosin-based rhythmic dynamics in neighboring cells: a common pulsatile mechanism between 2 and 6.25 min period governing both fusion and fission events contributing to pattern maintenance, and cell area pulses predominantly exhibiting 10 min period.</p>\",\"PeriodicalId\":20207,\"journal\":{\"name\":\"Physical biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1088/1478-3975/ada862\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/ada862","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

从延时显微镜图像中对半柔性生物聚合物网络进行跟踪和运动分析是重要的工具,可以通过定量测量来揭示活组织中生物聚合物的动态和机械特性,这对于理解它们的组织和功能至关重要。由于连续的随机转变,如合并和分裂,导致局部邻域在短时间和长度尺度上重新排列,生物聚合物网络的跟踪具有挑战性。为了解决这个问题,我们提出了STIPS算法(像素子集的时空信息),通过创建跨帧链接轨迹的像素子集来跟踪这些事件。使用这种方法,我们分析了肌动蛋白富集的突起,或“微脊”,它们在鳞状细胞上皮表面形成动态迷宫图案,模仿“活跃的图灵模式”。我们的研究结果揭示了相邻细胞中两种截然不同的基于肌动球蛋白的节律动力学:一种共同的脉动机制,周期为2至6.25分钟,控制融合和裂变事件,有助于维持模式,而细胞区域脉冲主要表现为10分钟周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
STIPS algorithm enables tracking labyrinthine patterns and reveals distinct rhythmic dynamics of actin microridges.

Tracking and motion analyses of semi-flexible biopolymer networks from time-lapse microscopy images are important tools that enable quantitative measurements to unravel the dynamic and mechanical properties of biopolymers in living tissues, crucial for understanding their organization and function. Biopolymer networks are challenging to track due to continuous stochastic transitions, such as merges and splits, which cause local neighborhood rearrangements over short time and length scales. To address this, we propose the Spatio Temporal Information on Pixel Subsets algorithm to track these events by creating pixel subsets that link trajectories across frames. Using this method, we analyzed actin-enriched protrusions, or 'microridges,' which form dynamic labyrinthine patterns on squamous cell epithelial surfaces, mimicking 'active Turing-patterns.' Our results reveal two distinct actomyosin-based rhythmic dynamics in neighboring cells: a common pulsatile mechanism between 2 and 6.25 min period governing both fusion and fission events contributing to pattern maintenance, and cell area pulses predominantly exhibiting 10 min period.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical biology
Physical biology 生物-生物物理
CiteScore
4.20
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity. Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as: molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division systems biology, e.g. signaling, gene regulation and metabolic networks cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis cell-cell interactions, cell aggregates, organoids, tissues and organs developmental dynamics, including pattern formation and morphogenesis physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation neuronal systems, including information processing by networks, memory and learning population dynamics, ecology, and evolution collective action and emergence of collective phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信