{"title":"基于自我批判策略调整的呼吸系统疾病诊断报告生成人工智能方法","authors":"Binyue Chen, Guohua Liu, Quan Zhang","doi":"10.1088/1361-6579/ada869","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Humanity faces many health challenges, among which respiratory diseases are one of the leading causes of human death. Existing AI-driven pre-diagnosis approaches can enhance the efficiency of diagnosis but still face challenges. For example, single-modal data suffer from information redundancy or loss, difficulty in learning relationships between features, and revealing the obscure characteristics of complex diseases. Therefore, it is critical to explore a method that can assist clinicians in detecting lesions early and in pre-diagnosing corresponding diseases.<i>Approach.</i>This paper introduces a novel network structure, strong constraint self-critical strategy network (SCSCS-Net), which can effectively extract image features from chest x-ray images and generate medical image descriptions, assist clinicians in analyzing patients' medical imaging information, deeply explore potential disease characteristics, and assist in making pre-diagnostic decisions. The SCSCS-Net consists of a reinforced cross-modal feature representation model and a self-critical cross-modal alignment model, which are responsible for learning the features interdependence between images and reports by using a multi-subspace self-attention structure and guiding the model in learning report generation strategies to improve the professionalism and consistency of medical terms in generated reports, respectively.<i>Main results.</i>We further compare our model with some advanced models on the same dataset, and the results demonstrate that our method achieves better performance. Finally, the CE and NLG metrics further confirm that the proposed method acquires the ability to generate high-quality medical reports with higher clinical consistency in generating medical reports.<i>Significance.</i>Our novel method has the potential to improve the early detection and pre-diagnosis of respiratory diseases. The model proposed in this paper allows to narrow the gap between artificial intelligence technology and clinical medical diagnosis and provides the possibility for in-depth integration.</p>","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-critical strategy adjustment based artificial intelligence method in generating diagnostic reports of respiratory diseases.\",\"authors\":\"Binyue Chen, Guohua Liu, Quan Zhang\",\"doi\":\"10.1088/1361-6579/ada869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective</i>. Humanity faces many health challenges, among which respiratory diseases are one of the leading causes of human death. Existing AI-driven pre-diagnosis approaches can enhance the efficiency of diagnosis but still face challenges. For example, single-modal data suffer from information redundancy or loss, difficulty in learning relationships between features, and revealing the obscure characteristics of complex diseases. Therefore, it is critical to explore a method that can assist clinicians in detecting lesions early and in pre-diagnosing corresponding diseases.<i>Approach.</i>This paper introduces a novel network structure, strong constraint self-critical strategy network (SCSCS-Net), which can effectively extract image features from chest x-ray images and generate medical image descriptions, assist clinicians in analyzing patients' medical imaging information, deeply explore potential disease characteristics, and assist in making pre-diagnostic decisions. The SCSCS-Net consists of a reinforced cross-modal feature representation model and a self-critical cross-modal alignment model, which are responsible for learning the features interdependence between images and reports by using a multi-subspace self-attention structure and guiding the model in learning report generation strategies to improve the professionalism and consistency of medical terms in generated reports, respectively.<i>Main results.</i>We further compare our model with some advanced models on the same dataset, and the results demonstrate that our method achieves better performance. Finally, the CE and NLG metrics further confirm that the proposed method acquires the ability to generate high-quality medical reports with higher clinical consistency in generating medical reports.<i>Significance.</i>Our novel method has the potential to improve the early detection and pre-diagnosis of respiratory diseases. The model proposed in this paper allows to narrow the gap between artificial intelligence technology and clinical medical diagnosis and provides the possibility for in-depth integration.</p>\",\"PeriodicalId\":20047,\"journal\":{\"name\":\"Physiological measurement\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6579/ada869\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ada869","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Self-critical strategy adjustment based artificial intelligence method in generating diagnostic reports of respiratory diseases.
Objective. Humanity faces many health challenges, among which respiratory diseases are one of the leading causes of human death. Existing AI-driven pre-diagnosis approaches can enhance the efficiency of diagnosis but still face challenges. For example, single-modal data suffer from information redundancy or loss, difficulty in learning relationships between features, and revealing the obscure characteristics of complex diseases. Therefore, it is critical to explore a method that can assist clinicians in detecting lesions early and in pre-diagnosing corresponding diseases.Approach.This paper introduces a novel network structure, strong constraint self-critical strategy network (SCSCS-Net), which can effectively extract image features from chest x-ray images and generate medical image descriptions, assist clinicians in analyzing patients' medical imaging information, deeply explore potential disease characteristics, and assist in making pre-diagnostic decisions. The SCSCS-Net consists of a reinforced cross-modal feature representation model and a self-critical cross-modal alignment model, which are responsible for learning the features interdependence between images and reports by using a multi-subspace self-attention structure and guiding the model in learning report generation strategies to improve the professionalism and consistency of medical terms in generated reports, respectively.Main results.We further compare our model with some advanced models on the same dataset, and the results demonstrate that our method achieves better performance. Finally, the CE and NLG metrics further confirm that the proposed method acquires the ability to generate high-quality medical reports with higher clinical consistency in generating medical reports.Significance.Our novel method has the potential to improve the early detection and pre-diagnosis of respiratory diseases. The model proposed in this paper allows to narrow the gap between artificial intelligence technology and clinical medical diagnosis and provides the possibility for in-depth integration.
期刊介绍:
Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation.
Papers are published on topics including:
applied physiology in illness and health
electrical bioimpedance, optical and acoustic measurement techniques
advanced methods of time series and other data analysis
biomedical and clinical engineering
in-patient and ambulatory monitoring
point-of-care technologies
novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems.
measurements in molecular, cellular and organ physiology and electrophysiology
physiological modeling and simulation
novel biomedical sensors, instruments, devices and systems
measurement standards and guidelines.