Drew Duckett, Erica R Vormittag-Nocito, Pouya Jamshidi, Madina Sukhanova, Stephanie Parker, Daniel J Brat, Lawrence J Jennings, Lucas Santana-Santos
{"title":"利用DNA甲基化准确识别未知来源肿瘤(two)的原发部位。","authors":"Drew Duckett, Erica R Vormittag-Nocito, Pouya Jamshidi, Madina Sukhanova, Stephanie Parker, Daniel J Brat, Lawrence J Jennings, Lucas Santana-Santos","doi":"10.1038/s41698-025-00805-z","DOIUrl":null,"url":null,"abstract":"<p><p>Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples. Our classifier achieves high accuracy in primary site identification when applied to both publicly available and internal validation samples, with 97% of samples classified correctly and 85% receiving high probability scores (≥0.9). Moreover, by employing pathologist expertise and t-SNE visualization, the TUO classifier can assign samples to 46 different sites of origin/disease classes. This strategy also revealed multiple classes of yet unknown significance for future exploration. Overall, the presented TUO classifier represents a significant step forward in the diagnosis of TUO tumors.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"8"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718252/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate identification of primary site in tumors of unknown origin (TUO) using DNA methylation.\",\"authors\":\"Drew Duckett, Erica R Vormittag-Nocito, Pouya Jamshidi, Madina Sukhanova, Stephanie Parker, Daniel J Brat, Lawrence J Jennings, Lucas Santana-Santos\",\"doi\":\"10.1038/s41698-025-00805-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples. Our classifier achieves high accuracy in primary site identification when applied to both publicly available and internal validation samples, with 97% of samples classified correctly and 85% receiving high probability scores (≥0.9). Moreover, by employing pathologist expertise and t-SNE visualization, the TUO classifier can assign samples to 46 different sites of origin/disease classes. This strategy also revealed multiple classes of yet unknown significance for future exploration. Overall, the presented TUO classifier represents a significant step forward in the diagnosis of TUO tumors.</p>\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":\"9 1\",\"pages\":\"8\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41698-025-00805-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00805-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Accurate identification of primary site in tumors of unknown origin (TUO) using DNA methylation.
Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples. Our classifier achieves high accuracy in primary site identification when applied to both publicly available and internal validation samples, with 97% of samples classified correctly and 85% receiving high probability scores (≥0.9). Moreover, by employing pathologist expertise and t-SNE visualization, the TUO classifier can assign samples to 46 different sites of origin/disease classes. This strategy also revealed multiple classes of yet unknown significance for future exploration. Overall, the presented TUO classifier represents a significant step forward in the diagnosis of TUO tumors.
期刊介绍:
Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.