利用DNA甲基化准确识别未知来源肿瘤(two)的原发部位。

IF 6.8 1区 医学 Q1 ONCOLOGY
Drew Duckett, Erica R Vormittag-Nocito, Pouya Jamshidi, Madina Sukhanova, Stephanie Parker, Daniel J Brat, Lawrence J Jennings, Lucas Santana-Santos
{"title":"利用DNA甲基化准确识别未知来源肿瘤(two)的原发部位。","authors":"Drew Duckett, Erica R Vormittag-Nocito, Pouya Jamshidi, Madina Sukhanova, Stephanie Parker, Daniel J Brat, Lawrence J Jennings, Lucas Santana-Santos","doi":"10.1038/s41698-025-00805-z","DOIUrl":null,"url":null,"abstract":"<p><p>Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples. Our classifier achieves high accuracy in primary site identification when applied to both publicly available and internal validation samples, with 97% of samples classified correctly and 85% receiving high probability scores (≥0.9). Moreover, by employing pathologist expertise and t-SNE visualization, the TUO classifier can assign samples to 46 different sites of origin/disease classes. This strategy also revealed multiple classes of yet unknown significance for future exploration. Overall, the presented TUO classifier represents a significant step forward in the diagnosis of TUO tumors.</p>","PeriodicalId":19433,"journal":{"name":"NPJ Precision Oncology","volume":"9 1","pages":"8"},"PeriodicalIF":6.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718252/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate identification of primary site in tumors of unknown origin (TUO) using DNA methylation.\",\"authors\":\"Drew Duckett, Erica R Vormittag-Nocito, Pouya Jamshidi, Madina Sukhanova, Stephanie Parker, Daniel J Brat, Lawrence J Jennings, Lucas Santana-Santos\",\"doi\":\"10.1038/s41698-025-00805-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples. Our classifier achieves high accuracy in primary site identification when applied to both publicly available and internal validation samples, with 97% of samples classified correctly and 85% receiving high probability scores (≥0.9). Moreover, by employing pathologist expertise and t-SNE visualization, the TUO classifier can assign samples to 46 different sites of origin/disease classes. This strategy also revealed multiple classes of yet unknown significance for future exploration. Overall, the presented TUO classifier represents a significant step forward in the diagnosis of TUO tumors.</p>\",\"PeriodicalId\":19433,\"journal\":{\"name\":\"NPJ Precision Oncology\",\"volume\":\"9 1\",\"pages\":\"8\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718252/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Precision Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41698-025-00805-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Precision Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41698-025-00805-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

来源不明的肿瘤(TUO)通常导致患者生存率低,临床上难以解决。确定2例患者的起源部位对其改善治疗和生存至关重要,但目前的方法很难获得。在这里,我们使用大量的原发性和转移性肿瘤样本开发了一个随机森林机器学习two甲基化分类器。当应用于公开可用和内部验证样本时,我们的分类器在主站点识别方面取得了很高的准确性,97%的样本分类正确,85%的样本获得高概率分数(≥0.9)。此外,通过病理学家的专业知识和t-SNE可视化,two分类器可以将样本分配到46个不同的起源部位/疾病类别。这一策略也揭示了未来勘探的多种未知意义。总的来说,所提出的two分类器在诊断two肿瘤方面迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate identification of primary site in tumors of unknown origin (TUO) using DNA methylation.

Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples. Our classifier achieves high accuracy in primary site identification when applied to both publicly available and internal validation samples, with 97% of samples classified correctly and 85% receiving high probability scores (≥0.9). Moreover, by employing pathologist expertise and t-SNE visualization, the TUO classifier can assign samples to 46 different sites of origin/disease classes. This strategy also revealed multiple classes of yet unknown significance for future exploration. Overall, the presented TUO classifier represents a significant step forward in the diagnosis of TUO tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.90
自引率
1.30%
发文量
87
审稿时长
18 weeks
期刊介绍: Online-only and open access, npj Precision Oncology is an international, peer-reviewed journal dedicated to showcasing cutting-edge scientific research in all facets of precision oncology, spanning from fundamental science to translational applications and clinical medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信