Shuang Gao, Sha Gao, Yanuo Wang, Lu Xiang, Hanwei Peng, Gong Chen, Jianmin Xu, Qiong Zhang, Caihong Zhu, Yingming Zhou, Na Li, Xi Shen
{"title":"抑制血管内皮生长因子通过神经营养调节减少视网膜新生血管疾病中的光受体死亡。","authors":"Shuang Gao, Sha Gao, Yanuo Wang, Lu Xiang, Hanwei Peng, Gong Chen, Jianmin Xu, Qiong Zhang, Caihong Zhu, Yingming Zhou, Na Li, Xi Shen","doi":"10.1007/s12035-025-04689-9","DOIUrl":null,"url":null,"abstract":"<p><p>VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition. Results showed that vitreous levels of NGF, NT-3, NT-4, BDNF, GDNF and CNTF were significantly higher in eyes undergoing anti-VEGF therapy compared with PDR controls. Statistical correlation between vitreous VEGF and each trophic factor was found. Hypoxia significantly induced the expressions of these neurotrophic factors, whereas application of anti-VEGF agent in OIR model could further upregulate retinal NGF, NT-3, NT-4, together with downregulation of BDNF, GDNF, CNTF, especially in Müller glia. Inhibition of Müller cell-derived VEGF would result in similar neurotrophic changes under hypoxia. With changes of corresponding neurotrophic receptors in the cocultured photoreceptor cells, their synergic effect could protect hypoxic photoreceptor from apoptosis when VEGF inhibition was present. These findings demonstrated that regulation of Müller cell-derived neurotrophic factors might be one of the possible mechanisms by which anti-VEGF therapy produced neuroprotective effects on PDR. These results provided new evidence for the therapeutic strategy of PDR.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"6352-6368"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of Vascular Endothelial Growth Factor Reduces Photoreceptor Death in Retinal Neovascular Disease via Neurotrophic Modulation in Müller Glia.\",\"authors\":\"Shuang Gao, Sha Gao, Yanuo Wang, Lu Xiang, Hanwei Peng, Gong Chen, Jianmin Xu, Qiong Zhang, Caihong Zhu, Yingming Zhou, Na Li, Xi Shen\",\"doi\":\"10.1007/s12035-025-04689-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition. Results showed that vitreous levels of NGF, NT-3, NT-4, BDNF, GDNF and CNTF were significantly higher in eyes undergoing anti-VEGF therapy compared with PDR controls. Statistical correlation between vitreous VEGF and each trophic factor was found. Hypoxia significantly induced the expressions of these neurotrophic factors, whereas application of anti-VEGF agent in OIR model could further upregulate retinal NGF, NT-3, NT-4, together with downregulation of BDNF, GDNF, CNTF, especially in Müller glia. Inhibition of Müller cell-derived VEGF would result in similar neurotrophic changes under hypoxia. With changes of corresponding neurotrophic receptors in the cocultured photoreceptor cells, their synergic effect could protect hypoxic photoreceptor from apoptosis when VEGF inhibition was present. These findings demonstrated that regulation of Müller cell-derived neurotrophic factors might be one of the possible mechanisms by which anti-VEGF therapy produced neuroprotective effects on PDR. These results provided new evidence for the therapeutic strategy of PDR.</p>\",\"PeriodicalId\":18762,\"journal\":{\"name\":\"Molecular Neurobiology\",\"volume\":\" \",\"pages\":\"6352-6368\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurobiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12035-025-04689-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04689-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Inhibition of Vascular Endothelial Growth Factor Reduces Photoreceptor Death in Retinal Neovascular Disease via Neurotrophic Modulation in Müller Glia.
VEGF is not only the most potent angiogenic factor, but also an important neurotrophic factor. In this study, vitreous expression of six neurotrophic factors were examined in proliferative diabetic retinopathy (PDR) patients with prior anti-VEGF therapy (n = 48) or without anti-VEGF treatment (n = 41) via ELISA. Potential source, variation and impact of these factors were further investigated in a mouse model of oxygen-induced retinopathy (OIR), as well as primary Müller cells and 661W photoreceptor cell line under hypoxic condition. Results showed that vitreous levels of NGF, NT-3, NT-4, BDNF, GDNF and CNTF were significantly higher in eyes undergoing anti-VEGF therapy compared with PDR controls. Statistical correlation between vitreous VEGF and each trophic factor was found. Hypoxia significantly induced the expressions of these neurotrophic factors, whereas application of anti-VEGF agent in OIR model could further upregulate retinal NGF, NT-3, NT-4, together with downregulation of BDNF, GDNF, CNTF, especially in Müller glia. Inhibition of Müller cell-derived VEGF would result in similar neurotrophic changes under hypoxia. With changes of corresponding neurotrophic receptors in the cocultured photoreceptor cells, their synergic effect could protect hypoxic photoreceptor from apoptosis when VEGF inhibition was present. These findings demonstrated that regulation of Müller cell-derived neurotrophic factors might be one of the possible mechanisms by which anti-VEGF therapy produced neuroprotective effects on PDR. These results provided new evidence for the therapeutic strategy of PDR.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.