{"title":"hmgb1介导的Notch1/Hes-1通路在慢性鼻窦炎小鼠焦虑和抑郁样行为中的作用及机制","authors":"Fangwei Zhou, Yiting Jiang, Yangsong Li, Jianyao Li, Tian Zhang, Guodong Yu","doi":"10.1186/s10020-024-01057-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Chronic rhinosinusitis (CRS) is a global health issue, with some patients experiencing anxiety and depression-like symptoms. This study investigates the role of HMGB1 in anxiety and depression-like behaviors associated with the microglial Notch1/Hes-1 pathway in CRS mice.</p><p><strong>Methods: </strong>A CRS mouse model was developed, and behavioral assessments were conducted to evaluate anxiety and depression-like behaviors. Techniques including <sup>18</sup>F-FDG PET, Nissl staining, and immunofluorescence were used to assess hippocampal metabolic activity in CRS mice. Western Blot and RT-qPCR were employed to measure HMGB1 and Notch1/Hes-1 expression in the hippocampus, while ELISA determined inflammatory cytokine levels. The study also examined the effects of metformin on these behaviors and its mechanisms.</p><p><strong>Results: </strong>CRS mice exhibited increased anxiety and depression-like behaviors, accompanied by enhanced hippocampal metabolic activity. HMGB1-siRNA treatment reduced these behaviors. Hippocampal glucose metabolism was markedly higher in CRS mice than in controls. Nissl staining revealed hippocampal neuron damage, and immunofluorescence indicated microglial activation in CRS mice. Reducing HMGB1 expression inhibited Notch1/Hes-1 pathway activation. In microglia, HMGB1 knockdown suppressed the Notch1/Hes-1 pathway, reducing inflammatory cytokine secretion. Metformin improved neuropsychiatric symptoms in CRS mice by inhibiting the Notch1/Hes-1 pathway after HMGB1 downregulation.</p><p><strong>Conclusion: </strong>HMGB1 activates the microglial Notch1/Hes-1 pathway in CRS mice, promoting neuroinflammation and anxiety and depression-like behaviors. Metformin alleviates these effects.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"8"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721338/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role and mechanism of HMGB1-mediated Notch1/Hes-1 pathway in anxiety and depression-like behaviors in mice with chronic rhinosinusitis.\",\"authors\":\"Fangwei Zhou, Yiting Jiang, Yangsong Li, Jianyao Li, Tian Zhang, Guodong Yu\",\"doi\":\"10.1186/s10020-024-01057-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Chronic rhinosinusitis (CRS) is a global health issue, with some patients experiencing anxiety and depression-like symptoms. This study investigates the role of HMGB1 in anxiety and depression-like behaviors associated with the microglial Notch1/Hes-1 pathway in CRS mice.</p><p><strong>Methods: </strong>A CRS mouse model was developed, and behavioral assessments were conducted to evaluate anxiety and depression-like behaviors. Techniques including <sup>18</sup>F-FDG PET, Nissl staining, and immunofluorescence were used to assess hippocampal metabolic activity in CRS mice. Western Blot and RT-qPCR were employed to measure HMGB1 and Notch1/Hes-1 expression in the hippocampus, while ELISA determined inflammatory cytokine levels. The study also examined the effects of metformin on these behaviors and its mechanisms.</p><p><strong>Results: </strong>CRS mice exhibited increased anxiety and depression-like behaviors, accompanied by enhanced hippocampal metabolic activity. HMGB1-siRNA treatment reduced these behaviors. Hippocampal glucose metabolism was markedly higher in CRS mice than in controls. Nissl staining revealed hippocampal neuron damage, and immunofluorescence indicated microglial activation in CRS mice. Reducing HMGB1 expression inhibited Notch1/Hes-1 pathway activation. In microglia, HMGB1 knockdown suppressed the Notch1/Hes-1 pathway, reducing inflammatory cytokine secretion. Metformin improved neuropsychiatric symptoms in CRS mice by inhibiting the Notch1/Hes-1 pathway after HMGB1 downregulation.</p><p><strong>Conclusion: </strong>HMGB1 activates the microglial Notch1/Hes-1 pathway in CRS mice, promoting neuroinflammation and anxiety and depression-like behaviors. Metformin alleviates these effects.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"31 1\",\"pages\":\"8\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-01057-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-01057-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The role and mechanism of HMGB1-mediated Notch1/Hes-1 pathway in anxiety and depression-like behaviors in mice with chronic rhinosinusitis.
Background: Chronic rhinosinusitis (CRS) is a global health issue, with some patients experiencing anxiety and depression-like symptoms. This study investigates the role of HMGB1 in anxiety and depression-like behaviors associated with the microglial Notch1/Hes-1 pathway in CRS mice.
Methods: A CRS mouse model was developed, and behavioral assessments were conducted to evaluate anxiety and depression-like behaviors. Techniques including 18F-FDG PET, Nissl staining, and immunofluorescence were used to assess hippocampal metabolic activity in CRS mice. Western Blot and RT-qPCR were employed to measure HMGB1 and Notch1/Hes-1 expression in the hippocampus, while ELISA determined inflammatory cytokine levels. The study also examined the effects of metformin on these behaviors and its mechanisms.
Results: CRS mice exhibited increased anxiety and depression-like behaviors, accompanied by enhanced hippocampal metabolic activity. HMGB1-siRNA treatment reduced these behaviors. Hippocampal glucose metabolism was markedly higher in CRS mice than in controls. Nissl staining revealed hippocampal neuron damage, and immunofluorescence indicated microglial activation in CRS mice. Reducing HMGB1 expression inhibited Notch1/Hes-1 pathway activation. In microglia, HMGB1 knockdown suppressed the Notch1/Hes-1 pathway, reducing inflammatory cytokine secretion. Metformin improved neuropsychiatric symptoms in CRS mice by inhibiting the Notch1/Hes-1 pathway after HMGB1 downregulation.
Conclusion: HMGB1 activates the microglial Notch1/Hes-1 pathway in CRS mice, promoting neuroinflammation and anxiety and depression-like behaviors. Metformin alleviates these effects.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.