Jamie A Moroco, Alvaro Sebastian Vaca Jacome, Pierre Michel Jean Beltran, Andrew Reiter, Charlie Mundorff, Miklos Guttman, Jeff Morrow, Stephen Coales, Leland Mayne, Yoshitomo Hamuro, Steven A Carr, Malvina Papanastasiou
{"title":"HX-MS高通量测定未修饰肽和含ptm肽的交换率。","authors":"Jamie A Moroco, Alvaro Sebastian Vaca Jacome, Pierre Michel Jean Beltran, Andrew Reiter, Charlie Mundorff, Miklos Guttman, Jeff Morrow, Stephen Coales, Leland Mayne, Yoshitomo Hamuro, Steven A Carr, Malvina Papanastasiou","doi":"10.1016/j.mcpro.2025.100904","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values. Using fully deuterated controls, we found that for approximately 50% of the peptides, the amino acid sequence and, consequently, the intrinsic exchange rate, are the primary contributors to back exchange. A meta-analysis of the remaining physicochemical properties of peptides revealed multiple features that contribute either positively or negatively to back exchange discrepancies. Employing our workflow for comparable measurements on synthetic peptide mixtures containing post-translational modifications, and their unmodified counterparts, we show that lysine acetylation has a strong effect on the observed exchange rate, whereas serine/threonine phosphorylation does not. Our automated workflow enables high-throughput determination of exchange rates in complex biological peptide mixtures with diverse properties.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100904"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875167/pdf/","citationCount":"0","resultStr":"{\"title\":\"High-Throughput Determination of Exchange Rates of Unmodified and PTM-Containing Peptides Using HX-MS.\",\"authors\":\"Jamie A Moroco, Alvaro Sebastian Vaca Jacome, Pierre Michel Jean Beltran, Andrew Reiter, Charlie Mundorff, Miklos Guttman, Jeff Morrow, Stephen Coales, Leland Mayne, Yoshitomo Hamuro, Steven A Carr, Malvina Papanastasiou\",\"doi\":\"10.1016/j.mcpro.2025.100904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values. Using fully deuterated controls, we found that for approximately 50% of the peptides, the amino acid sequence and, consequently, the intrinsic exchange rate, are the primary contributors to back exchange. A meta-analysis of the remaining physicochemical properties of peptides revealed multiple features that contribute either positively or negatively to back exchange discrepancies. Employing our workflow for comparable measurements on synthetic peptide mixtures containing post-translational modifications, and their unmodified counterparts, we show that lysine acetylation has a strong effect on the observed exchange rate, whereas serine/threonine phosphorylation does not. Our automated workflow enables high-throughput determination of exchange rates in complex biological peptide mixtures with diverse properties.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100904\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2025.100904\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100904","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
High-Throughput Determination of Exchange Rates of Unmodified and PTM-Containing Peptides Using HX-MS.
Despite the widespread use of MS for hydrogen/deuterium exchange measurements, no systematic, large-scale study has been conducted to compare the observed exchange rates in protein-derived, unstructured peptides measured by MS to the predicted exchange rates calculated from NMR-derived values and how neighboring residues and post-translational modifications influence those exchange rates. In this study, we sought to test the accuracy of predicted values by performing hydrogen exchange measurements on whole cell digests to generate an unbiased dataset of 563 unique peptides derived from naturally occurring protein sequences. A remarkable 97% of observed exchange rates of peptides are within two-fold of predicted values. Using fully deuterated controls, we found that for approximately 50% of the peptides, the amino acid sequence and, consequently, the intrinsic exchange rate, are the primary contributors to back exchange. A meta-analysis of the remaining physicochemical properties of peptides revealed multiple features that contribute either positively or negatively to back exchange discrepancies. Employing our workflow for comparable measurements on synthetic peptide mixtures containing post-translational modifications, and their unmodified counterparts, we show that lysine acetylation has a strong effect on the observed exchange rate, whereas serine/threonine phosphorylation does not. Our automated workflow enables high-throughput determination of exchange rates in complex biological peptide mixtures with diverse properties.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes