苯扎氯铵通过NLRP3炎性体激活引发促炎反应。

IF 1.8 4区 医学 Q4 TOXICOLOGY
Tomohiro Kagi, Maoko Tan, Wakana Suzuki, Kohei Otani, Sara Suzuki, Yusuke Hirata, Takuya Noguchi, Atsushi Matsuzawa
{"title":"苯扎氯铵通过NLRP3炎性体激活引发促炎反应。","authors":"Tomohiro Kagi, Maoko Tan, Wakana Suzuki, Kohei Otani, Sara Suzuki, Yusuke Hirata, Takuya Noguchi, Atsushi Matsuzawa","doi":"10.2131/jts.50.11","DOIUrl":null,"url":null,"abstract":"<p><p>A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects. We firstly investigated whether BAC initiates inflammation, and found that BAC promotes the secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β) but not tumor necrosis factor-α (TNF-α) in macrophages. Interestingly, the IL-1β secretion triggered by the surfactants was completely blocked by the K-ATP channel blocker glibenclamide or the calcium chelating agent 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM. Moreover, genetic experiments revealed that BAC-dependent IL-1β secretion is mediated by the NLRP3 inflammasome. These results suggest that derangement of ion fluxes associated with the interfacial effects of BAC triggers NLRP3 inflammasome activation and subsequent inflammation. Thus, the NLRP3-dependent mechanisms triggered by BAC may explain the pathogenesis of surfactant-caused adverse effects.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"50 1","pages":"11-21"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Benzalkonium chloride initiates proinflammatory responses via NLRP3 inflammasome activation.\",\"authors\":\"Tomohiro Kagi, Maoko Tan, Wakana Suzuki, Kohei Otani, Sara Suzuki, Yusuke Hirata, Takuya Noguchi, Atsushi Matsuzawa\",\"doi\":\"10.2131/jts.50.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects. We firstly investigated whether BAC initiates inflammation, and found that BAC promotes the secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β) but not tumor necrosis factor-α (TNF-α) in macrophages. Interestingly, the IL-1β secretion triggered by the surfactants was completely blocked by the K-ATP channel blocker glibenclamide or the calcium chelating agent 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM. Moreover, genetic experiments revealed that BAC-dependent IL-1β secretion is mediated by the NLRP3 inflammasome. These results suggest that derangement of ion fluxes associated with the interfacial effects of BAC triggers NLRP3 inflammasome activation and subsequent inflammation. Thus, the NLRP3-dependent mechanisms triggered by BAC may explain the pathogenesis of surfactant-caused adverse effects.</p>\",\"PeriodicalId\":17654,\"journal\":{\"name\":\"Journal of Toxicological Sciences\",\"volume\":\"50 1\",\"pages\":\"11-21\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2131/jts.50.11\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.50.11","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

典型的表面活性剂苯扎氯铵(BAC)被用作消毒剂,但有时会引起严重的副作用,包括肺疾病,如间质性肺炎。然而,其致病机制尚不清楚。在这项研究中,我们确定了BAC启动炎症反应的新机制,这可能是其副作用的原因。我们首先研究了BAC是否引发炎症,发现BAC促进巨噬细胞中促炎细胞因子白细胞介素-1β (IL-1β)的分泌,而不是肿瘤坏死因子-α (TNF-α)的分泌。有趣的是,由表面活性剂引发的IL-1β分泌被K-ATP通道阻滞剂格列本脲或钙螯合剂1,2-二(2-氨基苯氧基)乙烷-N,N,N‘,N’-四乙酸(BAPTA)-AM完全阻断。此外,基因实验显示,bac依赖性IL-1β分泌是由NLRP3炎性体介导的。这些结果表明,与BAC界面效应相关的离子通量紊乱触发NLRP3炎症小体激活和随后的炎症。因此,由BAC触发的nlrp3依赖机制可以解释表面活性剂引起的不良反应的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benzalkonium chloride initiates proinflammatory responses via NLRP3 inflammasome activation.

A representative surfactant, benzalkonium chloride (BAC) is used as a disinfectant, but sometimes causes serious side effects, including lung disorders such as interstitial pneumonia. However, its pathogenic mechanisms remain unexplained. In this study, we identified a novel mechanism by which BAC initiates inflammatory responses that may be responsible for its side effects. We firstly investigated whether BAC initiates inflammation, and found that BAC promotes the secretion of the pro-inflammatory cytokine interleukin-1β (IL-1β) but not tumor necrosis factor-α (TNF-α) in macrophages. Interestingly, the IL-1β secretion triggered by the surfactants was completely blocked by the K-ATP channel blocker glibenclamide or the calcium chelating agent 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA)-AM. Moreover, genetic experiments revealed that BAC-dependent IL-1β secretion is mediated by the NLRP3 inflammasome. These results suggest that derangement of ion fluxes associated with the interfacial effects of BAC triggers NLRP3 inflammasome activation and subsequent inflammation. Thus, the NLRP3-dependent mechanisms triggered by BAC may explain the pathogenesis of surfactant-caused adverse effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.00%
发文量
53
审稿时长
4-8 weeks
期刊介绍: The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信