{"title":"通过安全即插即用互操作性的开放生态系统:概述。","authors":"Christoph Fischer","doi":"10.1177/19322968241310253","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interoperability is a critical enabler for integrated Personalized Diabetes Management (iPDM), automated insulin delivery (AID), and the digital transformation of healthcare in general. However, manufacturers still create closed ecosystems (ie, solutions designed to work end-to-end minimizing collaboration with other organizations) with proprietary interfaces because of various interoperability challenges. Therefore, the aim of this article is to provide an overview of how to achieve organizational interoperability in an open ecosystem (ie, solutions designed to integrate different organizations via interoperability standards) for diabetes management.</p><p><strong>Methods: </strong>The proposed interoperability design approach called Secure Plug and Play Interoperability (SPPI) supports building and using interoperable system elements in an open ecosystem. Secure Plug and Play Interoperability enables interoperability over the entire system life cycle with its reference architecture, secure interoperability standards, and organizational capabilities. These standards were developed with participation from healthcare providers, regulatory authorities, payers, academia, and manufacturers. Publicly available information provides examples of implementation support and practical usage.</p><p><strong>Results: </strong>Organizational interoperability in an open ecosystem can be achieved through organizational capabilities and a selection of secure interoperability standards. ISO/IEEE 11073, Bluetooth profiles, and HL7 FHIR with test specifications, test tools, software development kits, and quality assurance programs represent a coordinated selection suitable for building an open ecosystem. Practical usage is demonstrated with real-world solutions that build on these standards.</p><p><strong>Conclusions: </strong>Secure Plug and Play Interoperability facilitates the end-to-end integration of devices, digital products, and services from partners in an open ecosystem. Moreover, even a single manufacturer, who provides all system elements of a solution, can use and benefit from SPPI.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"19322968241310253"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707763/pdf/","citationCount":"0","resultStr":"{\"title\":\"Open Ecosystem Through Secure Plug and Play Interoperability: An Overview.\",\"authors\":\"Christoph Fischer\",\"doi\":\"10.1177/19322968241310253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Interoperability is a critical enabler for integrated Personalized Diabetes Management (iPDM), automated insulin delivery (AID), and the digital transformation of healthcare in general. However, manufacturers still create closed ecosystems (ie, solutions designed to work end-to-end minimizing collaboration with other organizations) with proprietary interfaces because of various interoperability challenges. Therefore, the aim of this article is to provide an overview of how to achieve organizational interoperability in an open ecosystem (ie, solutions designed to integrate different organizations via interoperability standards) for diabetes management.</p><p><strong>Methods: </strong>The proposed interoperability design approach called Secure Plug and Play Interoperability (SPPI) supports building and using interoperable system elements in an open ecosystem. Secure Plug and Play Interoperability enables interoperability over the entire system life cycle with its reference architecture, secure interoperability standards, and organizational capabilities. These standards were developed with participation from healthcare providers, regulatory authorities, payers, academia, and manufacturers. Publicly available information provides examples of implementation support and practical usage.</p><p><strong>Results: </strong>Organizational interoperability in an open ecosystem can be achieved through organizational capabilities and a selection of secure interoperability standards. ISO/IEEE 11073, Bluetooth profiles, and HL7 FHIR with test specifications, test tools, software development kits, and quality assurance programs represent a coordinated selection suitable for building an open ecosystem. Practical usage is demonstrated with real-world solutions that build on these standards.</p><p><strong>Conclusions: </strong>Secure Plug and Play Interoperability facilitates the end-to-end integration of devices, digital products, and services from partners in an open ecosystem. Moreover, even a single manufacturer, who provides all system elements of a solution, can use and benefit from SPPI.</p>\",\"PeriodicalId\":15475,\"journal\":{\"name\":\"Journal of Diabetes Science and Technology\",\"volume\":\" \",\"pages\":\"19322968241310253\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707763/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19322968241310253\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241310253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Open Ecosystem Through Secure Plug and Play Interoperability: An Overview.
Background: Interoperability is a critical enabler for integrated Personalized Diabetes Management (iPDM), automated insulin delivery (AID), and the digital transformation of healthcare in general. However, manufacturers still create closed ecosystems (ie, solutions designed to work end-to-end minimizing collaboration with other organizations) with proprietary interfaces because of various interoperability challenges. Therefore, the aim of this article is to provide an overview of how to achieve organizational interoperability in an open ecosystem (ie, solutions designed to integrate different organizations via interoperability standards) for diabetes management.
Methods: The proposed interoperability design approach called Secure Plug and Play Interoperability (SPPI) supports building and using interoperable system elements in an open ecosystem. Secure Plug and Play Interoperability enables interoperability over the entire system life cycle with its reference architecture, secure interoperability standards, and organizational capabilities. These standards were developed with participation from healthcare providers, regulatory authorities, payers, academia, and manufacturers. Publicly available information provides examples of implementation support and practical usage.
Results: Organizational interoperability in an open ecosystem can be achieved through organizational capabilities and a selection of secure interoperability standards. ISO/IEEE 11073, Bluetooth profiles, and HL7 FHIR with test specifications, test tools, software development kits, and quality assurance programs represent a coordinated selection suitable for building an open ecosystem. Practical usage is demonstrated with real-world solutions that build on these standards.
Conclusions: Secure Plug and Play Interoperability facilitates the end-to-end integration of devices, digital products, and services from partners in an open ecosystem. Moreover, even a single manufacturer, who provides all system elements of a solution, can use and benefit from SPPI.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.