{"title":"eb病毒感染对免疫介导性疾病患者免疫细胞基因调控的影响","authors":"Yuko Akutsu , Mineto Ota , Takahiro Itamiya , Masaaki Mori , Tomohiro Morio , Kazuhiko Yamamoto , Tomohisa Okamura , Keishi Fujio","doi":"10.1016/j.jaut.2024.103355","DOIUrl":null,"url":null,"abstract":"<div><div>It has been known that Epstein-Barr virus (EBV) can latently infect immune cells after the initial infection, and epidemiological studies have suggested its association with the onset of immune-mediated diseases (IMDs). However, the specific impact of EBV infection on IMDs pathology remains unclear. We quantified EBV load of B cell subsets (Naïve B cells, Unswitched memory B cells, Switched memory B cells, Double negative B cells, and Plasmablasts) in IMD patients as well as healthy control (HC) using bulk RNA sequencing data of 504 donors. The EBV load was clearly higher in IMD patients compared to HC. Furthermore, the wide range of EBV load in this dataset enabled us to assess the impact of EBV load on gene regulation. We found many examples of expression quantitative trait loci (eQTL) whose effects were associated with EBV load. Expression QTLs that exhibited larger effects with increasing EBV load were significantly overlapped with binding sites of transcription factors derived from the EBV genome. These EBV load-associated eQTLs exhibited high enrichment of systemic lupus erythematosus (SLE) GWAS signals, suggesting the mechanical link of EBV infection and the onset of the disease via gene regulation. These findings provide the first evidence of the influence of EBV infection on gene regulation in human primary cells and its association with the SLE onset and/or progression.</div></div>","PeriodicalId":15245,"journal":{"name":"Journal of autoimmunity","volume":"150 ","pages":"Article 103355"},"PeriodicalIF":7.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Epstein-Barr Virus infection on gene regulation in immune cells of patients with Immune-Mediated Diseases\",\"authors\":\"Yuko Akutsu , Mineto Ota , Takahiro Itamiya , Masaaki Mori , Tomohiro Morio , Kazuhiko Yamamoto , Tomohisa Okamura , Keishi Fujio\",\"doi\":\"10.1016/j.jaut.2024.103355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It has been known that Epstein-Barr virus (EBV) can latently infect immune cells after the initial infection, and epidemiological studies have suggested its association with the onset of immune-mediated diseases (IMDs). However, the specific impact of EBV infection on IMDs pathology remains unclear. We quantified EBV load of B cell subsets (Naïve B cells, Unswitched memory B cells, Switched memory B cells, Double negative B cells, and Plasmablasts) in IMD patients as well as healthy control (HC) using bulk RNA sequencing data of 504 donors. The EBV load was clearly higher in IMD patients compared to HC. Furthermore, the wide range of EBV load in this dataset enabled us to assess the impact of EBV load on gene regulation. We found many examples of expression quantitative trait loci (eQTL) whose effects were associated with EBV load. Expression QTLs that exhibited larger effects with increasing EBV load were significantly overlapped with binding sites of transcription factors derived from the EBV genome. These EBV load-associated eQTLs exhibited high enrichment of systemic lupus erythematosus (SLE) GWAS signals, suggesting the mechanical link of EBV infection and the onset of the disease via gene regulation. These findings provide the first evidence of the influence of EBV infection on gene regulation in human primary cells and its association with the SLE onset and/or progression.</div></div>\",\"PeriodicalId\":15245,\"journal\":{\"name\":\"Journal of autoimmunity\",\"volume\":\"150 \",\"pages\":\"Article 103355\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of autoimmunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0896841124001896\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of autoimmunity","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0896841124001896","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Effect of Epstein-Barr Virus infection on gene regulation in immune cells of patients with Immune-Mediated Diseases
It has been known that Epstein-Barr virus (EBV) can latently infect immune cells after the initial infection, and epidemiological studies have suggested its association with the onset of immune-mediated diseases (IMDs). However, the specific impact of EBV infection on IMDs pathology remains unclear. We quantified EBV load of B cell subsets (Naïve B cells, Unswitched memory B cells, Switched memory B cells, Double negative B cells, and Plasmablasts) in IMD patients as well as healthy control (HC) using bulk RNA sequencing data of 504 donors. The EBV load was clearly higher in IMD patients compared to HC. Furthermore, the wide range of EBV load in this dataset enabled us to assess the impact of EBV load on gene regulation. We found many examples of expression quantitative trait loci (eQTL) whose effects were associated with EBV load. Expression QTLs that exhibited larger effects with increasing EBV load were significantly overlapped with binding sites of transcription factors derived from the EBV genome. These EBV load-associated eQTLs exhibited high enrichment of systemic lupus erythematosus (SLE) GWAS signals, suggesting the mechanical link of EBV infection and the onset of the disease via gene regulation. These findings provide the first evidence of the influence of EBV infection on gene regulation in human primary cells and its association with the SLE onset and/or progression.
期刊介绍:
The Journal of Autoimmunity serves as the primary publication for research on various facets of autoimmunity. These include topics such as the mechanism of self-recognition, regulation of autoimmune responses, experimental autoimmune diseases, diagnostic tests for autoantibodies, as well as the epidemiology, pathophysiology, and treatment of autoimmune diseases. While the journal covers a wide range of subjects, it emphasizes papers exploring the genetic, molecular biology, and cellular aspects of the field.
The Journal of Translational Autoimmunity, on the other hand, is a subsidiary journal of the Journal of Autoimmunity. It focuses specifically on translating scientific discoveries in autoimmunity into clinical applications and practical solutions. By highlighting research that bridges the gap between basic science and clinical practice, the Journal of Translational Autoimmunity aims to advance the understanding and treatment of autoimmune diseases.