Katrin Saße, Karina Albers, Daniela Eulenstein, Georg Weidlich, Björn Poppe, Hui Khee Looe
{"title":"PTW Semiflex三维电离室参考剂量测定的光束质量校正因子k Q msr ${k}_{{Q}_{{\\ maththrm {msr}}}}$","authors":"Katrin Saße, Karina Albers, Daniela Eulenstein, Georg Weidlich, Björn Poppe, Hui Khee Looe","doi":"10.1002/acm2.14610","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions. Therefore, Monte Carlo simulations were performed to quantify the associated beam quality correction factor <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math>.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> of the Semiflex3D chamber was computed from the ratio of the absorbed doses in a water voxel and in the sensitive air volume of the chamber simulated using a <sup>60</sup>Co spectrum as the calibration beam quality (<i>Q</i><sub>ref</sub>) and the spectrum of the ZAP-X 3 MV photon beam (<i>Q</i><sub>msr</sub>). <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> was computed as a function of measurement depth from 4 to 50 mm. Furthermore, detailed simulations were performed to determine the individual chamber's perturbation correction factors by modifying the chamber's model step-wise.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>All perturbation correction factors, except <i>S</i><sub>w,air</sub> ⋅<i>P</i><sub>fl</sub>, show depth-dependent behavior up to a depth of 15 mm. In particular, the volume-averaging <i>P</i><sub>vol</sub> and density <i>P</i><sub>dens</sub> perturbation correction factors and, consequently, the resulting gradient perturbation correction factor <i>P</i><sub>gr </sub>= <i>P</i><sub>vol</sub>∙<i>P</i><sub>dens</sub> increase with decreasing measurement depth. Therefore, <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> is larger than unity, amounting to <span></span><math>\n <semantics>\n <mrow>\n <mn>1.0104</mn>\n <mspace></mspace>\n <mo>±</mo>\n <mspace></mspace>\n <mn>0.0072</mn>\n </mrow>\n <annotation>$1.0104\\ \\pm \\ 0.0072$</annotation>\n </semantics></math> at 7 mm measurement depth. At larger depths (> 15 mm), the <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <mo>=</mo>\n <mn>0.9964</mn>\n <mspace></mspace>\n <mo>±</mo>\n <mspace></mspace>\n <mn>0.0025</mn>\n </mrow>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}} = 0.9964\\ \\pm \\ 0.0025$</annotation>\n </semantics></math> can be considered as constant.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>At small measurement depths, <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> was found to be depth-dependent with values larger than unity due to the gradient-related perturbation factors. Therefore, the uncertainty related to the chamber's positioning can be reduced by performing the reference dosimetry at ZAP-X at depths larger than 15 mm, where <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> can be regarded as depth independent.</p>\n </section>\n </div>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":"26 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.14610","citationCount":"0","resultStr":"{\"title\":\"Determination of the beam quality correction factor \\n \\n \\n k\\n \\n Q\\n msr\\n \\n \\n ${k}_{{Q}_{{\\\\mathrm{msr}}}}$\\n for the PTW Semiflex 3D ionization chamber for the reference dosimetry at ZAP-X\",\"authors\":\"Katrin Saße, Karina Albers, Daniela Eulenstein, Georg Weidlich, Björn Poppe, Hui Khee Looe\",\"doi\":\"10.1002/acm2.14610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions. Therefore, Monte Carlo simulations were performed to quantify the associated beam quality correction factor <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math>.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> of the Semiflex3D chamber was computed from the ratio of the absorbed doses in a water voxel and in the sensitive air volume of the chamber simulated using a <sup>60</sup>Co spectrum as the calibration beam quality (<i>Q</i><sub>ref</sub>) and the spectrum of the ZAP-X 3 MV photon beam (<i>Q</i><sub>msr</sub>). <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> was computed as a function of measurement depth from 4 to 50 mm. Furthermore, detailed simulations were performed to determine the individual chamber's perturbation correction factors by modifying the chamber's model step-wise.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>All perturbation correction factors, except <i>S</i><sub>w,air</sub> ⋅<i>P</i><sub>fl</sub>, show depth-dependent behavior up to a depth of 15 mm. In particular, the volume-averaging <i>P</i><sub>vol</sub> and density <i>P</i><sub>dens</sub> perturbation correction factors and, consequently, the resulting gradient perturbation correction factor <i>P</i><sub>gr </sub>= <i>P</i><sub>vol</sub>∙<i>P</i><sub>dens</sub> increase with decreasing measurement depth. Therefore, <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> is larger than unity, amounting to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1.0104</mn>\\n <mspace></mspace>\\n <mo>±</mo>\\n <mspace></mspace>\\n <mn>0.0072</mn>\\n </mrow>\\n <annotation>$1.0104\\\\ \\\\pm \\\\ 0.0072$</annotation>\\n </semantics></math> at 7 mm measurement depth. At larger depths (> 15 mm), the <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <mo>=</mo>\\n <mn>0.9964</mn>\\n <mspace></mspace>\\n <mo>±</mo>\\n <mspace></mspace>\\n <mn>0.0025</mn>\\n </mrow>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}} = 0.9964\\\\ \\\\pm \\\\ 0.0025$</annotation>\\n </semantics></math> can be considered as constant.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>At small measurement depths, <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> was found to be depth-dependent with values larger than unity due to the gradient-related perturbation factors. Therefore, the uncertainty related to the chamber's positioning can be reduced by performing the reference dosimetry at ZAP-X at depths larger than 15 mm, where <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> can be regarded as depth independent.</p>\\n </section>\\n </div>\",\"PeriodicalId\":14989,\"journal\":{\"name\":\"Journal of Applied Clinical Medical Physics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.14610\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Clinical Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14610\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14610","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Determination of the beam quality correction factor
k
Q
msr
${k}_{{Q}_{{\mathrm{msr}}}}$
for the PTW Semiflex 3D ionization chamber for the reference dosimetry at ZAP-X
Purpose
The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions. Therefore, Monte Carlo simulations were performed to quantify the associated beam quality correction factor .
Methods
The of the Semiflex3D chamber was computed from the ratio of the absorbed doses in a water voxel and in the sensitive air volume of the chamber simulated using a 60Co spectrum as the calibration beam quality (Qref) and the spectrum of the ZAP-X 3 MV photon beam (Qmsr). was computed as a function of measurement depth from 4 to 50 mm. Furthermore, detailed simulations were performed to determine the individual chamber's perturbation correction factors by modifying the chamber's model step-wise.
Results
All perturbation correction factors, except Sw,air ⋅Pfl, show depth-dependent behavior up to a depth of 15 mm. In particular, the volume-averaging Pvol and density Pdens perturbation correction factors and, consequently, the resulting gradient perturbation correction factor Pgr = Pvol∙Pdens increase with decreasing measurement depth. Therefore, is larger than unity, amounting to at 7 mm measurement depth. At larger depths (> 15 mm), the can be considered as constant.
Conclusion
At small measurement depths, was found to be depth-dependent with values larger than unity due to the gradient-related perturbation factors. Therefore, the uncertainty related to the chamber's positioning can be reduced by performing the reference dosimetry at ZAP-X at depths larger than 15 mm, where can be regarded as depth independent.
期刊介绍:
Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission.
JACMP will publish:
-Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500.
-Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed.
-Technical Notes: These should be no longer than 3000 words, including key references.
-Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents.
-Book Reviews: The editorial office solicits Book Reviews.
-Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics.
-Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic