PTW Semiflex三维电离室参考剂量测定的光束质量校正因子k Q msr ${k}_{{Q}_{{\ maththrm {msr}}}}$

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Katrin Saße, Karina Albers, Daniela Eulenstein, Georg Weidlich, Björn Poppe, Hui Khee Looe
{"title":"PTW Semiflex三维电离室参考剂量测定的光束质量校正因子k Q msr ${k}_{{Q}_{{\\ maththrm {msr}}}}$","authors":"Katrin Saße,&nbsp;Karina Albers,&nbsp;Daniela Eulenstein,&nbsp;Georg Weidlich,&nbsp;Björn Poppe,&nbsp;Hui Khee Looe","doi":"10.1002/acm2.14610","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions. Therefore, Monte Carlo simulations were performed to quantify the associated beam quality correction factor <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math>.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> of the Semiflex3D chamber was computed from the ratio of the absorbed doses in a water voxel and in the sensitive air volume of the chamber simulated using a <sup>60</sup>Co spectrum as the calibration beam quality (<i>Q</i><sub>ref</sub>) and the spectrum of the ZAP-X 3 MV photon beam (<i>Q</i><sub>msr</sub>). <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> was computed as a function of measurement depth from 4 to 50 mm. Furthermore, detailed simulations were performed to determine the individual chamber's perturbation correction factors by modifying the chamber's model step-wise.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>All perturbation correction factors, except <i>S</i><sub>w,air</sub> ⋅<i>P</i><sub>fl</sub>, show depth-dependent behavior up to a depth of 15 mm. In particular, the volume-averaging <i>P</i><sub>vol</sub> and density <i>P</i><sub>dens</sub> perturbation correction factors and, consequently, the resulting gradient perturbation correction factor <i>P</i><sub>gr </sub>= <i>P</i><sub>vol</sub>∙<i>P</i><sub>dens</sub> increase with decreasing measurement depth. Therefore, <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> is larger than unity, amounting to <span></span><math>\n <semantics>\n <mrow>\n <mn>1.0104</mn>\n <mspace></mspace>\n <mo>±</mo>\n <mspace></mspace>\n <mn>0.0072</mn>\n </mrow>\n <annotation>$1.0104\\ \\pm \\ 0.0072$</annotation>\n </semantics></math> at 7 mm measurement depth. At larger depths (&gt; 15 mm), the <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <mo>=</mo>\n <mn>0.9964</mn>\n <mspace></mspace>\n <mo>±</mo>\n <mspace></mspace>\n <mn>0.0025</mn>\n </mrow>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}} = 0.9964\\ \\pm \\ 0.0025$</annotation>\n </semantics></math> can be considered as constant.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>At small measurement depths, <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> was found to be depth-dependent with values larger than unity due to the gradient-related perturbation factors. Therefore, the uncertainty related to the chamber's positioning can be reduced by performing the reference dosimetry at ZAP-X at depths larger than 15 mm, where <span></span><math>\n <semantics>\n <msubsup>\n <mi>k</mi>\n <mrow>\n <msub>\n <mi>Q</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>Q</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n <mrow>\n <msub>\n <mi>f</mi>\n <mi>msr</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>f</mi>\n <mi>ref</mi>\n </msub>\n </mrow>\n </msubsup>\n <annotation>$k_{{Q}_{{\\mathrm{msr}}},{Q}_{{\\mathrm{ref}}}}^{{f}_{{\\mathrm{msr}}},{f}_{{\\mathrm{ref}}}}$</annotation>\n </semantics></math> can be regarded as depth independent.</p>\n </section>\n </div>","PeriodicalId":14989,"journal":{"name":"Journal of Applied Clinical Medical Physics","volume":"26 2","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.14610","citationCount":"0","resultStr":"{\"title\":\"Determination of the beam quality correction factor \\n \\n \\n k\\n \\n Q\\n msr\\n \\n \\n ${k}_{{Q}_{{\\\\mathrm{msr}}}}$\\n for the PTW Semiflex 3D ionization chamber for the reference dosimetry at ZAP-X\",\"authors\":\"Katrin Saße,&nbsp;Karina Albers,&nbsp;Daniela Eulenstein,&nbsp;Georg Weidlich,&nbsp;Björn Poppe,&nbsp;Hui Khee Looe\",\"doi\":\"10.1002/acm2.14610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions. Therefore, Monte Carlo simulations were performed to quantify the associated beam quality correction factor <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math>.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> of the Semiflex3D chamber was computed from the ratio of the absorbed doses in a water voxel and in the sensitive air volume of the chamber simulated using a <sup>60</sup>Co spectrum as the calibration beam quality (<i>Q</i><sub>ref</sub>) and the spectrum of the ZAP-X 3 MV photon beam (<i>Q</i><sub>msr</sub>). <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> was computed as a function of measurement depth from 4 to 50 mm. Furthermore, detailed simulations were performed to determine the individual chamber's perturbation correction factors by modifying the chamber's model step-wise.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>All perturbation correction factors, except <i>S</i><sub>w,air</sub> ⋅<i>P</i><sub>fl</sub>, show depth-dependent behavior up to a depth of 15 mm. In particular, the volume-averaging <i>P</i><sub>vol</sub> and density <i>P</i><sub>dens</sub> perturbation correction factors and, consequently, the resulting gradient perturbation correction factor <i>P</i><sub>gr </sub>= <i>P</i><sub>vol</sub>∙<i>P</i><sub>dens</sub> increase with decreasing measurement depth. Therefore, <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> is larger than unity, amounting to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1.0104</mn>\\n <mspace></mspace>\\n <mo>±</mo>\\n <mspace></mspace>\\n <mn>0.0072</mn>\\n </mrow>\\n <annotation>$1.0104\\\\ \\\\pm \\\\ 0.0072$</annotation>\\n </semantics></math> at 7 mm measurement depth. At larger depths (&gt; 15 mm), the <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <mo>=</mo>\\n <mn>0.9964</mn>\\n <mspace></mspace>\\n <mo>±</mo>\\n <mspace></mspace>\\n <mn>0.0025</mn>\\n </mrow>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}} = 0.9964\\\\ \\\\pm \\\\ 0.0025$</annotation>\\n </semantics></math> can be considered as constant.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>At small measurement depths, <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> was found to be depth-dependent with values larger than unity due to the gradient-related perturbation factors. Therefore, the uncertainty related to the chamber's positioning can be reduced by performing the reference dosimetry at ZAP-X at depths larger than 15 mm, where <span></span><math>\\n <semantics>\\n <msubsup>\\n <mi>k</mi>\\n <mrow>\\n <msub>\\n <mi>Q</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>Q</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n <mrow>\\n <msub>\\n <mi>f</mi>\\n <mi>msr</mi>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>f</mi>\\n <mi>ref</mi>\\n </msub>\\n </mrow>\\n </msubsup>\\n <annotation>$k_{{Q}_{{\\\\mathrm{msr}}},{Q}_{{\\\\mathrm{ref}}}}^{{f}_{{\\\\mathrm{msr}}},{f}_{{\\\\mathrm{ref}}}}$</annotation>\\n </semantics></math> can be regarded as depth independent.</p>\\n </section>\\n </div>\",\"PeriodicalId\":14989,\"journal\":{\"name\":\"Journal of Applied Clinical Medical Physics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/acm2.14610\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Clinical Medical Physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14610\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Clinical Medical Physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acm2.14610","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:自屏蔽放射外科系统ZAP-X由一个3 MV直线加速器和8个圆准直器组成。对于该系统,通常的做法是使用最大直径25毫米的准直器,在源到轴的距离(SAD)为45厘米,将PTW Semiflex3D腔室放置在水中7毫米的测量深度处进行参考剂量测定。现有的剂量学方案没有对这些测量条件提供校正。因此,通过蒙特卡罗模拟来量化相关波束质量校正因子k Q msr, Q ref msr, f ref $k_{{Q}_{\mathrm{msr}}},{Q}_{\mathrm{ref}}}}^{{f}_{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$。利用60Co光谱作为校准光束质量(Qref)和zpar - x3 MV光子光束(Qmsr)的光谱,通过模拟腔内水体素吸收剂量与敏感空气体积吸收剂量之比,计算出了Semiflex3D腔室的k Qmsr、Qref msr、f ref $k_{Q}_{{\mathrm{msr}}}、{Q}_{{\mathrm{msr}}、{f}_{{\mathrm{msr}}}}}$。k Q msr, Q ref msr, f ref $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$作为测量深度从4到50 mm的函数计算。此外,通过逐级修正燃烧室模型,进行了详细的模拟,以确定单个燃烧室的扰动校正因子。结果:在15mm深度内,除Sw、air⋅Pfl外,所有扰动修正因子均随深度变化。特别是,体积平均Pvol和密度Pdens扰动校正因子以及由此产生的梯度扰动校正因子Pgr = Pvol∙Pdens随着测量深度的减小而增大。因此,k Q msr, Q ref msr, f ref $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$大于1,在7 mm测量深度为1.0104±0.0072$ 1.0104\ \pm \ 0.0072$。在更大的深度(> 15毫米),k问msr,问ref f msr, f ref = 0.9964±0.0025美元k_ {{Q} _ {{\ mathrm {msr}}}, {Q} _ {{\ mathrm {ref}}}} ^ {{f} _ {{\ mathrm {msr}}}, {f} _ {{\ mathrm {ref}}}} = 0.9964 \ \ \下午0.0025美元可以被视为常数。结论:在较小的测量深度下,由于梯度相关的扰动因素,k Q msr、Q ref msr、f ref $k_{{Q}_{{\mathrm{msr}}、{Q}_{{\mathrm{msr}}、{f}_{{\mathrm{msr}}、{f}_{{\mathrm{ref}}}}$与深度相关,且值大于1。因此,通过在深度大于15 mm的zak - x上进行参考剂量测定,可以降低与腔室定位相关的不确定性,其中k Q msr, Q ref msr, f ref $k_{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$可视为与深度无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determination of the beam quality correction factor 
         
            
               k
               
                  Q
                  msr
               
            
            ${k}_{{Q}_{{\mathrm{msr}}}}$
          for the PTW Semiflex 3D ionization chamber for the reference dosimetry at ZAP-X

Determination of the beam quality correction factor k Q msr ${k}_{{Q}_{{\mathrm{msr}}}}$ for the PTW Semiflex 3D ionization chamber for the reference dosimetry at ZAP-X

Purpose

The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions. Therefore, Monte Carlo simulations were performed to quantify the associated beam quality correction factor k Q msr , Q ref f msr , f ref $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$ .

Methods

The k Q msr , Q ref f msr , f ref $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$ of the Semiflex3D chamber was computed from the ratio of the absorbed doses in a water voxel and in the sensitive air volume of the chamber simulated using a 60Co spectrum as the calibration beam quality (Qref) and the spectrum of the ZAP-X 3 MV photon beam (Qmsr). k Q msr , Q ref f msr , f ref $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$ was computed as a function of measurement depth from 4 to 50 mm. Furthermore, detailed simulations were performed to determine the individual chamber's perturbation correction factors by modifying the chamber's model step-wise.

Results

All perturbation correction factors, except Sw,airPfl, show depth-dependent behavior up to a depth of 15 mm. In particular, the volume-averaging Pvol and density Pdens perturbation correction factors and, consequently, the resulting gradient perturbation correction factor Pgr PvolPdens increase with decreasing measurement depth. Therefore, k Q msr , Q ref f msr , f ref $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$ is larger than unity, amounting to 1.0104 ± 0.0072 $1.0104\ \pm \ 0.0072$ at 7 mm measurement depth. At larger depths (> 15 mm), the k Q msr , Q ref f msr , f ref = 0.9964 ± 0.0025 $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}} = 0.9964\ \pm \ 0.0025$ can be considered as constant.

Conclusion

At small measurement depths, k Q msr , Q ref f msr , f ref $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$ was found to be depth-dependent with values larger than unity due to the gradient-related perturbation factors. Therefore, the uncertainty related to the chamber's positioning can be reduced by performing the reference dosimetry at ZAP-X at depths larger than 15 mm, where k Q msr , Q ref f msr , f ref $k_{{Q}_{{\mathrm{msr}}},{Q}_{{\mathrm{ref}}}}^{{f}_{{\mathrm{msr}}},{f}_{{\mathrm{ref}}}}$ can be regarded as depth independent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
19.00%
发文量
331
审稿时长
3 months
期刊介绍: Journal of Applied Clinical Medical Physics is an international Open Access publication dedicated to clinical medical physics. JACMP welcomes original contributions dealing with all aspects of medical physics from scientists working in the clinical medical physics around the world. JACMP accepts only online submission. JACMP will publish: -Original Contributions: Peer-reviewed, investigations that represent new and significant contributions to the field. Recommended word count: up to 7500. -Review Articles: Reviews of major areas or sub-areas in the field of clinical medical physics. These articles may be of any length and are peer reviewed. -Technical Notes: These should be no longer than 3000 words, including key references. -Letters to the Editor: Comments on papers published in JACMP or on any other matters of interest to clinical medical physics. These should not be more than 1250 (including the literature) and their publication is only based on the decision of the editor, who occasionally asks experts on the merit of the contents. -Book Reviews: The editorial office solicits Book Reviews. -Announcements of Forthcoming Meetings: The Editor may provide notice of forthcoming meetings, course offerings, and other events relevant to clinical medical physics. -Parallel Opposed Editorial: We welcome topics relevant to clinical practice and medical physics profession. The contents can be controversial debate or opposed aspects of an issue. One author argues for the position and the other against. Each side of the debate contains an opening statement up to 800 words, followed by a rebuttal up to 500 words. Readers interested in participating in this series should contact the moderator with a proposed title and a short description of the topic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信