肠道Foxl1+细胞衍生的CXCL12通过调节细胞代谢维持上皮稳态。

IF 4.8 4区 医学 Q2 IMMUNOLOGY
Mayu Yagita-Sakamaki, Takayoshi Ito, Taiki Sakaguchi, Shuichi Shimma, Bo Li, Daisuke Okuzaki, Daisuke Motooka, Shota Nakamura, Koji Hase, Eiichiro Fukusaki, Akira Kikuchi, Takashi Nagasawa, Atsushi Kumanogoh, Kiyoshi Takeda, Hisako Kayama
{"title":"肠道Foxl1+细胞衍生的CXCL12通过调节细胞代谢维持上皮稳态。","authors":"Mayu Yagita-Sakamaki, Takayoshi Ito, Taiki Sakaguchi, Shuichi Shimma, Bo Li, Daisuke Okuzaki, Daisuke Motooka, Shota Nakamura, Koji Hase, Eiichiro Fukusaki, Akira Kikuchi, Takashi Nagasawa, Atsushi Kumanogoh, Kiyoshi Takeda, Hisako Kayama","doi":"10.1093/intimm/dxae068","DOIUrl":null,"url":null,"abstract":"<p><p>Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and GABA, act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription. In addition, we found that CXCL12 produced from Foxl1high sub-epithelial mesenchymal cells induces epithelial cell cycle arrest through modulation of the mevalonate-cholesterol synthesis pathway, which suppresses tumor progression in ApcMin/+ mice. We identified that Foxl1high sub-epithelial cells highly express CXCL12 among colonic mesenchymal cells. Foxl1-cre; Cxcl12f/f mice showed an increased number of Ki67+ colonic epithelial cells. CXCL12-induced Ca2+ mobilization facilitated phosphorylation of AMPK in intestinal epithelial cells, which inhibits the maturation of SREBPs that are responsible for mevalonate pathway activation. Furthermore, Cxcl12 deficiency in Foxl1-expressing cells promoted tumor development in the small and large intestines of ApcMin/+ mice. Collectively, these results demonstrate that CXCL12 secreted from Foxl1high mesenchymal cells manipulates intestinal epithelial cell metabolism, which links to the prevention of tumor progression in ApcMin/+ mice.</p>","PeriodicalId":13743,"journal":{"name":"International immunology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intestinal Foxl1+ cell-derived CXCL12 maintains epithelial homeostasis by modulating cellular metabolism.\",\"authors\":\"Mayu Yagita-Sakamaki, Takayoshi Ito, Taiki Sakaguchi, Shuichi Shimma, Bo Li, Daisuke Okuzaki, Daisuke Motooka, Shota Nakamura, Koji Hase, Eiichiro Fukusaki, Akira Kikuchi, Takashi Nagasawa, Atsushi Kumanogoh, Kiyoshi Takeda, Hisako Kayama\",\"doi\":\"10.1093/intimm/dxae068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and GABA, act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription. In addition, we found that CXCL12 produced from Foxl1high sub-epithelial mesenchymal cells induces epithelial cell cycle arrest through modulation of the mevalonate-cholesterol synthesis pathway, which suppresses tumor progression in ApcMin/+ mice. We identified that Foxl1high sub-epithelial cells highly express CXCL12 among colonic mesenchymal cells. Foxl1-cre; Cxcl12f/f mice showed an increased number of Ki67+ colonic epithelial cells. CXCL12-induced Ca2+ mobilization facilitated phosphorylation of AMPK in intestinal epithelial cells, which inhibits the maturation of SREBPs that are responsible for mevalonate pathway activation. Furthermore, Cxcl12 deficiency in Foxl1-expressing cells promoted tumor development in the small and large intestines of ApcMin/+ mice. Collectively, these results demonstrate that CXCL12 secreted from Foxl1high mesenchymal cells manipulates intestinal epithelial cell metabolism, which links to the prevention of tumor progression in ApcMin/+ mice.</p>\",\"PeriodicalId\":13743,\"journal\":{\"name\":\"International immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/intimm/dxae068\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/intimm/dxae068","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已知几种间充质细胞群调节肠干细胞(ISC)的自我更新和分化。然而,除ISC生态位因子外,来自间充质细胞的信号介质对上皮稳态的影响尚不清楚。在这里,我们发现宿主和微生物代谢物,如牛磺酸和GABA,作用于pdgfr α高fox1高亚上皮间充质细胞,调节其转录。此外,我们发现foxl1高亚上皮间充质细胞产生的CXCL12通过调节甲羟戊酸-胆固醇合成途径诱导上皮细胞周期阻滞,从而抑制ApcMin/+小鼠的肿瘤进展。我们发现foxl1高亚上皮细胞在结肠间充质细胞中高度表达CXCL12。Foxl1-cre;Cxcl12f/f小鼠显示Ki67+结肠上皮细胞数量增加。cxcl12诱导的Ca2+动员促进了肠上皮细胞AMPK的磷酸化,从而抑制了负责甲羟戊酸途径激活的srebp的成熟。此外,foxl1表达细胞中Cxcl12的缺乏促进了ApcMin/+小鼠小肠和大肠肿瘤的发展。综上所述,这些结果表明fox1high mesenchymal细胞分泌的CXCL12操纵肠上皮细胞代谢,这与ApcMin/+小鼠肿瘤进展的预防有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intestinal Foxl1+ cell-derived CXCL12 maintains epithelial homeostasis by modulating cellular metabolism.

Several mesenchymal cell populations are known to regulate intestinal stem cell (ISC) self-renewal and differentiation. However, the influences of signaling mediators derived from mesenchymal cells other than ISC niche factors on epithelial homeostasis remain poorly understood. Here, we show that host and microbial metabolites, such as taurine and GABA, act on PDGFRαhigh Foxl1high sub-epithelial mesenchymal cells to regulate their transcription. In addition, we found that CXCL12 produced from Foxl1high sub-epithelial mesenchymal cells induces epithelial cell cycle arrest through modulation of the mevalonate-cholesterol synthesis pathway, which suppresses tumor progression in ApcMin/+ mice. We identified that Foxl1high sub-epithelial cells highly express CXCL12 among colonic mesenchymal cells. Foxl1-cre; Cxcl12f/f mice showed an increased number of Ki67+ colonic epithelial cells. CXCL12-induced Ca2+ mobilization facilitated phosphorylation of AMPK in intestinal epithelial cells, which inhibits the maturation of SREBPs that are responsible for mevalonate pathway activation. Furthermore, Cxcl12 deficiency in Foxl1-expressing cells promoted tumor development in the small and large intestines of ApcMin/+ mice. Collectively, these results demonstrate that CXCL12 secreted from Foxl1high mesenchymal cells manipulates intestinal epithelial cell metabolism, which links to the prevention of tumor progression in ApcMin/+ mice.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International immunology
International immunology 医学-免疫学
CiteScore
9.30
自引率
2.30%
发文量
51
审稿时长
6-12 weeks
期刊介绍: International Immunology is an online only (from Jan 2018) journal that publishes basic research and clinical studies from all areas of immunology and includes research conducted in laboratories throughout the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信