{"title":"基于非增强胸部CT的深度学习模型在骨质疏松症机会筛查中的应用:一项多中心回顾性队列研究。","authors":"Chengbin Huang, Dengying Wu, Bingzhang Wang, Chenxuan Hong, Jiasen Hu, Zijian Yan, Jianpeng Chen, Yaping Jin, Yingze Zhang","doi":"10.1186/s13244-024-01817-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>A large number of middle-aged and elderly patients have an insufficient understanding of osteoporosis and its harm. This study aimed to establish and validate a convolutional neural network (CNN) model based on unenhanced chest computed tomography (CT) images of the vertebral body and skeletal muscle for opportunistic screening in patients with osteoporosis.</p><p><strong>Materials and methods: </strong>Our team retrospectively collected clinical information from participants who underwent unenhanced chest CT and dual-energy X-ray absorptiometry (DXA) examinations between January 1, 2022, and December 31, 2022, at four hospitals. These participants were divided into a training set (n = 581), an external test set 1 (n = 229), an external test set 2 (n = 198) and an external test set 3 (n = 118). Five CNN models were constructed based on chest CT images to screen patients with osteoporosis and compared with the SMI model to predict the performance of osteoporosis patients.</p><p><strong>Results: </strong>All CNN models have good performance in predicting osteoporosis patients. The average F1 score of Densenet121 in the three external test sets was 0.865. The area under the curve (AUC) of Desenet121 in external test set 1, external test set 2, and external test set 3 were 0.827, 0.859, and 0.865, respectively. Furthermore, the Densenet121 model demonstrated a notably superior performance compared to the SMI model in predicting osteoporosis patients.</p><p><strong>Conclusions: </strong>The CNN model based on unenhanced chest CT vertebral and skeletal muscle images can opportunistically screen patients with osteoporosis. Clinicians can use the CNN model to intervene in patients with osteoporosis and promptly avoid fragility fractures.</p><p><strong>Critical relevance statement: </strong>The CNN model based on unenhanced chest CT vertebral and skeletal muscle images can opportunistically screen patients with osteoporosis. Clinicians can use the CNN model to intervene in patients with osteoporosis and promptly avoid fragility fractures.</p><p><strong>Key points: </strong>The application of unenhanced chest CT is increasing. Most people do not consciously use DXA to screen themselves for osteoporosis. A deep learning model was constructed based on CT images from four institutions.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"10"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723875/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of deep learning model based on unenhanced chest CT for opportunistic screening of osteoporosis: a multicenter retrospective cohort study.\",\"authors\":\"Chengbin Huang, Dengying Wu, Bingzhang Wang, Chenxuan Hong, Jiasen Hu, Zijian Yan, Jianpeng Chen, Yaping Jin, Yingze Zhang\",\"doi\":\"10.1186/s13244-024-01817-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>A large number of middle-aged and elderly patients have an insufficient understanding of osteoporosis and its harm. This study aimed to establish and validate a convolutional neural network (CNN) model based on unenhanced chest computed tomography (CT) images of the vertebral body and skeletal muscle for opportunistic screening in patients with osteoporosis.</p><p><strong>Materials and methods: </strong>Our team retrospectively collected clinical information from participants who underwent unenhanced chest CT and dual-energy X-ray absorptiometry (DXA) examinations between January 1, 2022, and December 31, 2022, at four hospitals. These participants were divided into a training set (n = 581), an external test set 1 (n = 229), an external test set 2 (n = 198) and an external test set 3 (n = 118). Five CNN models were constructed based on chest CT images to screen patients with osteoporosis and compared with the SMI model to predict the performance of osteoporosis patients.</p><p><strong>Results: </strong>All CNN models have good performance in predicting osteoporosis patients. The average F1 score of Densenet121 in the three external test sets was 0.865. The area under the curve (AUC) of Desenet121 in external test set 1, external test set 2, and external test set 3 were 0.827, 0.859, and 0.865, respectively. Furthermore, the Densenet121 model demonstrated a notably superior performance compared to the SMI model in predicting osteoporosis patients.</p><p><strong>Conclusions: </strong>The CNN model based on unenhanced chest CT vertebral and skeletal muscle images can opportunistically screen patients with osteoporosis. Clinicians can use the CNN model to intervene in patients with osteoporosis and promptly avoid fragility fractures.</p><p><strong>Critical relevance statement: </strong>The CNN model based on unenhanced chest CT vertebral and skeletal muscle images can opportunistically screen patients with osteoporosis. Clinicians can use the CNN model to intervene in patients with osteoporosis and promptly avoid fragility fractures.</p><p><strong>Key points: </strong>The application of unenhanced chest CT is increasing. Most people do not consciously use DXA to screen themselves for osteoporosis. A deep learning model was constructed based on CT images from four institutions.</p>\",\"PeriodicalId\":13639,\"journal\":{\"name\":\"Insights into Imaging\",\"volume\":\"16 1\",\"pages\":\"10\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11723875/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insights into Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13244-024-01817-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-024-01817-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Application of deep learning model based on unenhanced chest CT for opportunistic screening of osteoporosis: a multicenter retrospective cohort study.
Introduction: A large number of middle-aged and elderly patients have an insufficient understanding of osteoporosis and its harm. This study aimed to establish and validate a convolutional neural network (CNN) model based on unenhanced chest computed tomography (CT) images of the vertebral body and skeletal muscle for opportunistic screening in patients with osteoporosis.
Materials and methods: Our team retrospectively collected clinical information from participants who underwent unenhanced chest CT and dual-energy X-ray absorptiometry (DXA) examinations between January 1, 2022, and December 31, 2022, at four hospitals. These participants were divided into a training set (n = 581), an external test set 1 (n = 229), an external test set 2 (n = 198) and an external test set 3 (n = 118). Five CNN models were constructed based on chest CT images to screen patients with osteoporosis and compared with the SMI model to predict the performance of osteoporosis patients.
Results: All CNN models have good performance in predicting osteoporosis patients. The average F1 score of Densenet121 in the three external test sets was 0.865. The area under the curve (AUC) of Desenet121 in external test set 1, external test set 2, and external test set 3 were 0.827, 0.859, and 0.865, respectively. Furthermore, the Densenet121 model demonstrated a notably superior performance compared to the SMI model in predicting osteoporosis patients.
Conclusions: The CNN model based on unenhanced chest CT vertebral and skeletal muscle images can opportunistically screen patients with osteoporosis. Clinicians can use the CNN model to intervene in patients with osteoporosis and promptly avoid fragility fractures.
Critical relevance statement: The CNN model based on unenhanced chest CT vertebral and skeletal muscle images can opportunistically screen patients with osteoporosis. Clinicians can use the CNN model to intervene in patients with osteoporosis and promptly avoid fragility fractures.
Key points: The application of unenhanced chest CT is increasing. Most people do not consciously use DXA to screen themselves for osteoporosis. A deep learning model was constructed based on CT images from four institutions.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.