Klotho通过抑制ERK1/2和Wnt/β - catenin信号通路,减弱视网膜下纤维化中视网膜色素上皮细胞的上皮-间质转化。

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
International journal of molecular medicine Pub Date : 2025-03-01 Epub Date: 2025-01-10 DOI:10.3892/ijmm.2025.5486
Yingle Jiang, Xuewei Wen, Xiaoyu Jian, Qianbo Chen, Yan Li
{"title":"Klotho通过抑制ERK1/2和Wnt/β - catenin信号通路,减弱视网膜下纤维化中视网膜色素上皮细胞的上皮-间质转化。","authors":"Yingle Jiang, Xuewei Wen, Xiaoyu Jian, Qianbo Chen, Yan Li","doi":"10.3892/ijmm.2025.5486","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis. The aim of the present study was to explore the effects of klotho on subretinal fibrosis induced by laser photocoagulation in mice and EMT induced by TGF‑β1 in RPE cells and the underlying molecular mechanisms. <i>In vitro</i>, klotho overexpression or knockdown was performed in ARPE‑19 cells (adult retinal Pigment Epithelial‑19), then TGF‑β1 treatment was applied. Using western blotting, expression of epithelial markers (zonula occludens‑1), mesenchymal signs (α‑smooth muscle actin, α‑SMA, N‑cadherin, N‑cad and collagen I), and the ERK1/2 and Wnt/β‑catenin signaling pathways were assessed. The proliferative ability of ARPE‑19 cells was examined by CCK‑8 and EdU test, and the migratory ability was examined by wound healing and Transwell assays. Furthermore, to explore the underlying molecular pathway of klotho overexpression, RNA‑sequencing (seq) was performed. <i>In vivo</i>, photocoagulation was used to induce subretinal fibrosis in mice, which occurs as a result of choroidal neovascularization (CNV), then recombinant mouse klotho protein was administered intravitreally. Upregulation of epithelial and downregulation of mesenchymal markers demonstrated that klotho overexpression prevented TGF‑β1‑induced EMT; klotho knockdown resulted in the opposite effects. Additionally, klotho overexpression suppressed cell proliferation and migration and attenuated ERK1/2 and Wnt/β‑catenin signaling activated by TGF‑β1. RNA‑seq results demonstrated that several signaling pathways, including cellular senescence and the TNF signaling pathway, were associated with anti‑fibrotic effects of klotho overexpression. <i>In vivo</i>, subretinal fibrotic areas were attenuated following klotho treatment in laser‑induced CNV lesions, as illustrated by immunofluorescence and Masson staining of the mouse eyes. Western blotting results that the protein levels of mesenchymal markers were significantly downregulated and those of epithelial markers were upregulated. In summary, the present study suggested that klotho may have therapeutic value in management of fibrotic vitreoretinal disorders such as subretinal fibrosis.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758894/pdf/","citationCount":"0","resultStr":"{\"title\":\"Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways.\",\"authors\":\"Yingle Jiang, Xuewei Wen, Xiaoyu Jian, Qianbo Chen, Yan Li\",\"doi\":\"10.3892/ijmm.2025.5486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis. The aim of the present study was to explore the effects of klotho on subretinal fibrosis induced by laser photocoagulation in mice and EMT induced by TGF‑β1 in RPE cells and the underlying molecular mechanisms. <i>In vitro</i>, klotho overexpression or knockdown was performed in ARPE‑19 cells (adult retinal Pigment Epithelial‑19), then TGF‑β1 treatment was applied. Using western blotting, expression of epithelial markers (zonula occludens‑1), mesenchymal signs (α‑smooth muscle actin, α‑SMA, N‑cadherin, N‑cad and collagen I), and the ERK1/2 and Wnt/β‑catenin signaling pathways were assessed. The proliferative ability of ARPE‑19 cells was examined by CCK‑8 and EdU test, and the migratory ability was examined by wound healing and Transwell assays. Furthermore, to explore the underlying molecular pathway of klotho overexpression, RNA‑sequencing (seq) was performed. <i>In vivo</i>, photocoagulation was used to induce subretinal fibrosis in mice, which occurs as a result of choroidal neovascularization (CNV), then recombinant mouse klotho protein was administered intravitreally. Upregulation of epithelial and downregulation of mesenchymal markers demonstrated that klotho overexpression prevented TGF‑β1‑induced EMT; klotho knockdown resulted in the opposite effects. Additionally, klotho overexpression suppressed cell proliferation and migration and attenuated ERK1/2 and Wnt/β‑catenin signaling activated by TGF‑β1. RNA‑seq results demonstrated that several signaling pathways, including cellular senescence and the TNF signaling pathway, were associated with anti‑fibrotic effects of klotho overexpression. <i>In vivo</i>, subretinal fibrotic areas were attenuated following klotho treatment in laser‑induced CNV lesions, as illustrated by immunofluorescence and Masson staining of the mouse eyes. Western blotting results that the protein levels of mesenchymal markers were significantly downregulated and those of epithelial markers were upregulated. In summary, the present study suggested that klotho may have therapeutic value in management of fibrotic vitreoretinal disorders such as subretinal fibrosis.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"55 3\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758894/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5486\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5486","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

视网膜色素上皮(RPE)细胞发生上皮-间充质转化(EMT)是促进视网膜下纤维化进展的关键因素。klotho蛋白及其基因在多种纤维化疾病中发挥抗纤维化作用。然而,klotho在视网膜下纤维化中的作用机制尚不清楚。本研究旨在探讨klotho对激光光凝诱导小鼠视网膜下纤维化和TGF - β1诱导RPE细胞EMT的影响及其分子机制。在体外,在ARPE - 19细胞(成人视网膜色素上皮- 19)中进行klotho过表达或敲低,然后应用TGF - β1处理。采用western blotting检测上皮标记物(闭塞带- 1)、间质标志(α -平滑肌肌动蛋白、α - SMA、N - cadherin、N - cad和胶原I)以及ERK1/2和Wnt/β - catenin信号通路的表达。采用CCK - 8和EdU检测ARPE - 19细胞的增殖能力,采用创面愈合和Transwell检测ARPE - 19细胞的迁移能力。此外,为了探索klotho过表达的潜在分子途径,我们进行了RNA测序(seq)。在体内,采用光凝法诱导小鼠视网膜下纤维化,这是由于脉络膜新生血管(CNV)而发生的,然后通过玻璃体内给药重组小鼠klotho蛋白。上皮细胞的上调和间充质标记物的下调表明,klotho的过表达阻止了TGF - β1诱导的EMT;Klotho敲除会产生相反的效果。此外,klotho过表达抑制细胞增殖和迁移,减弱TGF - β1激活的ERK1/2和Wnt/β - catenin信号。RNA - seq结果表明,包括细胞衰老和TNF信号通路在内的几种信号通路与klotho过表达的抗纤维化作用有关。在体内,激光诱导的CNV病变在klotho治疗后,视网膜下纤维化区域减弱,如小鼠眼睛的免疫荧光和Masson染色所示。Western blotting结果显示,间充质标记蛋白水平显著下调,上皮标记蛋白水平上调。总之,本研究提示klotho可能在治疗纤维化性玻璃体视网膜疾病(如视网膜下纤维化)方面具有治疗价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Klotho attenuates epithelial‑mesenchymal transition of retinal pigment epithelial cells in subretinal fibrosis by suppressing the ERK1/2 and Wnt/β‑catenin signaling pathways.

Retinal pigment epithelial (RPE) cells undergoing epithelial‑mesenchymal transition (EMT) are a key factor in promoting the progression of subretinal fibrosis. The klotho protein and gene exert anti‑fibrotic effects in multiple fibrotic diseases. However, the mechanisms involved in the role of klotho are unclear in subretinal fibrosis. The aim of the present study was to explore the effects of klotho on subretinal fibrosis induced by laser photocoagulation in mice and EMT induced by TGF‑β1 in RPE cells and the underlying molecular mechanisms. In vitro, klotho overexpression or knockdown was performed in ARPE‑19 cells (adult retinal Pigment Epithelial‑19), then TGF‑β1 treatment was applied. Using western blotting, expression of epithelial markers (zonula occludens‑1), mesenchymal signs (α‑smooth muscle actin, α‑SMA, N‑cadherin, N‑cad and collagen I), and the ERK1/2 and Wnt/β‑catenin signaling pathways were assessed. The proliferative ability of ARPE‑19 cells was examined by CCK‑8 and EdU test, and the migratory ability was examined by wound healing and Transwell assays. Furthermore, to explore the underlying molecular pathway of klotho overexpression, RNA‑sequencing (seq) was performed. In vivo, photocoagulation was used to induce subretinal fibrosis in mice, which occurs as a result of choroidal neovascularization (CNV), then recombinant mouse klotho protein was administered intravitreally. Upregulation of epithelial and downregulation of mesenchymal markers demonstrated that klotho overexpression prevented TGF‑β1‑induced EMT; klotho knockdown resulted in the opposite effects. Additionally, klotho overexpression suppressed cell proliferation and migration and attenuated ERK1/2 and Wnt/β‑catenin signaling activated by TGF‑β1. RNA‑seq results demonstrated that several signaling pathways, including cellular senescence and the TNF signaling pathway, were associated with anti‑fibrotic effects of klotho overexpression. In vivo, subretinal fibrotic areas were attenuated following klotho treatment in laser‑induced CNV lesions, as illustrated by immunofluorescence and Masson staining of the mouse eyes. Western blotting results that the protein levels of mesenchymal markers were significantly downregulated and those of epithelial markers were upregulated. In summary, the present study suggested that klotho may have therapeutic value in management of fibrotic vitreoretinal disorders such as subretinal fibrosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信