一项基于队列的多组学研究发现,eIF5B /PD-L1/CD44复合物的核易位是克服arid1a缺陷肺腺癌奥西替尼耐药的靶点。

IF 9.4 1区 医学 Q1 HEMATOLOGY
Dantong Sun, Helei Hou, Feiyue Feng, Weizheng Wu, Jingyu Tan, Tongji Xie, Jiayu Liu, Jinsong Wang, Haili Qian, Junling Li, Puyuan Xing
{"title":"一项基于队列的多组学研究发现,eIF5B /PD-L1/CD44复合物的核易位是克服arid1a缺陷肺腺癌奥西替尼耐药的靶点。","authors":"Dantong Sun, Helei Hou, Feiyue Feng, Weizheng Wu, Jingyu Tan, Tongji Xie, Jiayu Liu, Jinsong Wang, Haili Qian, Junling Li, Puyuan Xing","doi":"10.1186/s40164-024-00594-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Osimertinib has emerged as a critical element in the treatment landscape following recent clinical trials. Further investigation into the mechanisms driving resistance to Osimertinib is necessary to address the restricted treatment options and survival advantages that are compromised by resistance in patients with EGFR-mutated lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>Spatial transcriptomic and proteomic analyses were utilized to investigate the mechanisms of Osimertinib resistance. Co-IP, MS, RNA-seq, ChIP-seq, RIP-seq, and ATAC-seq were performed in cell lines to further explore the mechanism. To validate the findings, in vitro and in vivo molecular experiments were conducted.</p><p><strong>Results: </strong>We found that the ARID1A deficiency results in resistance to Osimertinib by hindering programmed cell death through the EZH2/PTEN/E2F1 axis. This altered axis influences PD-L1 transcription through E2F1-mediated promoter activation and PD-L1 translation via the MDM2/eIF5B/PD-L1 axis. Subsequently, ARID1A deficiency results in increased expression of eIF5B and Importin-β1, promoting PD-L1 nuclear-translocation. The nuclear PD-L1 (nPD-L1) interacts with CD44, leading to nPD-L1 complex formation, activation of the RASGEF1A promoter, initiation of the Ras pathway, and contributing to Osimertinib resistance. Targeting the transcription, translation and nuclear-translocation of PD-L1 using lipid nanoparticles (LNPs) overcomes ARID1A deficiency-induced resistance.</p><p><strong>Conclusion: </strong>ARID1A deficiency promotes PD-L1 nuclear translocation and induces Osimertinib resistance.</p>","PeriodicalId":12180,"journal":{"name":"Experimental Hematology & Oncology","volume":"14 1","pages":"3"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705878/pdf/","citationCount":"0","resultStr":"{\"title\":\"A cohort-based multi-omics identifies nuclear translocation of eIF5B /PD-L1/CD44 complex as the target to overcome Osimertinib resistance of ARID1A-deficient lung adenocarcinoma.\",\"authors\":\"Dantong Sun, Helei Hou, Feiyue Feng, Weizheng Wu, Jingyu Tan, Tongji Xie, Jiayu Liu, Jinsong Wang, Haili Qian, Junling Li, Puyuan Xing\",\"doi\":\"10.1186/s40164-024-00594-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Osimertinib has emerged as a critical element in the treatment landscape following recent clinical trials. Further investigation into the mechanisms driving resistance to Osimertinib is necessary to address the restricted treatment options and survival advantages that are compromised by resistance in patients with EGFR-mutated lung adenocarcinoma (LUAD).</p><p><strong>Methods: </strong>Spatial transcriptomic and proteomic analyses were utilized to investigate the mechanisms of Osimertinib resistance. Co-IP, MS, RNA-seq, ChIP-seq, RIP-seq, and ATAC-seq were performed in cell lines to further explore the mechanism. To validate the findings, in vitro and in vivo molecular experiments were conducted.</p><p><strong>Results: </strong>We found that the ARID1A deficiency results in resistance to Osimertinib by hindering programmed cell death through the EZH2/PTEN/E2F1 axis. This altered axis influences PD-L1 transcription through E2F1-mediated promoter activation and PD-L1 translation via the MDM2/eIF5B/PD-L1 axis. Subsequently, ARID1A deficiency results in increased expression of eIF5B and Importin-β1, promoting PD-L1 nuclear-translocation. The nuclear PD-L1 (nPD-L1) interacts with CD44, leading to nPD-L1 complex formation, activation of the RASGEF1A promoter, initiation of the Ras pathway, and contributing to Osimertinib resistance. Targeting the transcription, translation and nuclear-translocation of PD-L1 using lipid nanoparticles (LNPs) overcomes ARID1A deficiency-induced resistance.</p><p><strong>Conclusion: </strong>ARID1A deficiency promotes PD-L1 nuclear translocation and induces Osimertinib resistance.</p>\",\"PeriodicalId\":12180,\"journal\":{\"name\":\"Experimental Hematology & Oncology\",\"volume\":\"14 1\",\"pages\":\"3\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705878/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Hematology & Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40164-024-00594-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Hematology & Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40164-024-00594-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在最近的临床试验之后,奥西替尼已经成为治疗领域的一个关键因素。有必要进一步研究驱动奥西替尼耐药的机制,以解决egfr突变肺腺癌(LUAD)患者耐药所损害的有限治疗选择和生存优势。方法:利用空间转录组学和蛋白质组学分析方法,探讨奥西替尼耐药机制。在细胞系中进行Co-IP、MS、RNA-seq、ChIP-seq、RIP-seq和ATAC-seq,进一步探讨其机制。为了验证这些发现,我们进行了体外和体内分子实验。结果:我们发现ARID1A缺陷通过EZH2/PTEN/E2F1轴阻碍程序性细胞死亡,从而导致对奥西替尼的耐药性。这种改变的轴通过e2f1介导的启动子激活和MDM2/eIF5B/PD-L1轴的PD-L1翻译影响PD-L1的转录。随后,ARID1A缺陷导致eIF5B和Importin-β1的表达增加,促进PD-L1核易位。核PD-L1 (nPD-L1)与CD44相互作用,导致nPD-L1复合物形成,激活RASGEF1A启动子,启动Ras通路,并促进奥西替尼耐药。利用脂质纳米颗粒(LNPs)靶向PD-L1的转录、翻译和核易位,克服了ARID1A缺陷诱导的耐药性。结论:ARID1A缺陷促进PD-L1核易位,诱导奥西替尼耐药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A cohort-based multi-omics identifies nuclear translocation of eIF5B /PD-L1/CD44 complex as the target to overcome Osimertinib resistance of ARID1A-deficient lung adenocarcinoma.

Background: Osimertinib has emerged as a critical element in the treatment landscape following recent clinical trials. Further investigation into the mechanisms driving resistance to Osimertinib is necessary to address the restricted treatment options and survival advantages that are compromised by resistance in patients with EGFR-mutated lung adenocarcinoma (LUAD).

Methods: Spatial transcriptomic and proteomic analyses were utilized to investigate the mechanisms of Osimertinib resistance. Co-IP, MS, RNA-seq, ChIP-seq, RIP-seq, and ATAC-seq were performed in cell lines to further explore the mechanism. To validate the findings, in vitro and in vivo molecular experiments were conducted.

Results: We found that the ARID1A deficiency results in resistance to Osimertinib by hindering programmed cell death through the EZH2/PTEN/E2F1 axis. This altered axis influences PD-L1 transcription through E2F1-mediated promoter activation and PD-L1 translation via the MDM2/eIF5B/PD-L1 axis. Subsequently, ARID1A deficiency results in increased expression of eIF5B and Importin-β1, promoting PD-L1 nuclear-translocation. The nuclear PD-L1 (nPD-L1) interacts with CD44, leading to nPD-L1 complex formation, activation of the RASGEF1A promoter, initiation of the Ras pathway, and contributing to Osimertinib resistance. Targeting the transcription, translation and nuclear-translocation of PD-L1 using lipid nanoparticles (LNPs) overcomes ARID1A deficiency-induced resistance.

Conclusion: ARID1A deficiency promotes PD-L1 nuclear translocation and induces Osimertinib resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
7.30%
发文量
97
审稿时长
6 weeks
期刊介绍: Experimental Hematology & Oncology is an open access journal that encompasses all aspects of hematology and oncology with an emphasis on preclinical, basic, patient-oriented and translational research. The journal acts as an international platform for sharing laboratory findings in these areas and makes a deliberate effort to publish clinical trials with 'negative' results and basic science studies with provocative findings. Experimental Hematology & Oncology publishes original work, hypothesis, commentaries and timely reviews. With open access and rapid turnaround time from submission to publication, the journal strives to be a hub for disseminating new knowledge and discussing controversial topics for both basic scientists and busy clinicians in the closely related fields of hematology and oncology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信