{"title":"APEX1的沉默通过app介导的p53/xCT信号激活引发透明细胞肾细胞癌的铁下垂。","authors":"Fang Huang , Hairui Ling , Jie Wang","doi":"10.1016/j.yexcr.2025.114409","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) is involved in regulating the proliferation, invasion, migration, and other malignant progression of various cancer cells. However, its mechanism in clear cell renal cell carcinoma (ccRCC) remains unclear.</div></div><div><h3>Methods</h3><div>UALCAN database was performed to predict APEX1 expression in ccRCC. CCK-8, colony formation, EdU, wound healing, transwell, and flow cytometry assays were used to assess cell proliferation, migration, invasion, and cell cycle. Expressions of cell cycle proteins and ferroptosis biomarkers were detected by Western blot. The levels of Fe<sup>2+</sup>, ROS, MDA, SOD, and GSH in cells were detected by assay kits. Fluorescent probe was used to monitor the intracellular lipid peroxidation level. The binding of APEX1 and amyloid precursor protein (APP) was validated by Co-IP. The expressions of p53/xCT pathway proteins were examined by Western blot.</div></div><div><h3>Results</h3><div>The results showed that APEX1 was highly expressed in ccRCC tissues and positively correlated with poor prognosis. Silencing of APEX1 inhibited the proliferation, invasion, and migration of Caki-1 cells and induced cell cycle arrest. This silencing also led to increased levels of intracellular Fe<sup>2+</sup>, lipid peroxidation, and ROS, thereby inducing cell ferroptosis. APEX1 could bind to APP, and their expressions were negatively correlated. Silencing of APP reversed the inhibition effects of APEX1 silencing on proliferation, invasion, migration, and cell cycle in Caki-1 cells. Moreover, silencing of APEX1 up-regulated the p53/xCT signaling by binding to APP, thereby promoting ferroptosis.</div></div><div><h3>Conclusion</h3><div>In summary, silencing of APEX1 promotes ferroptosis and inhibits the malignant progression of ccRCC, potentially through APP-mediated activation of p53/AKT signaling, providing a novel therapeutic strategy for ccRCC treatment.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"445 1","pages":"Article 114409"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silencing of APEX1 triggers ferroptosis in clear cell renal cell carcinoma via APP-mediated activation of p53/xCT signaling\",\"authors\":\"Fang Huang , Hairui Ling , Jie Wang\",\"doi\":\"10.1016/j.yexcr.2025.114409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) is involved in regulating the proliferation, invasion, migration, and other malignant progression of various cancer cells. However, its mechanism in clear cell renal cell carcinoma (ccRCC) remains unclear.</div></div><div><h3>Methods</h3><div>UALCAN database was performed to predict APEX1 expression in ccRCC. CCK-8, colony formation, EdU, wound healing, transwell, and flow cytometry assays were used to assess cell proliferation, migration, invasion, and cell cycle. Expressions of cell cycle proteins and ferroptosis biomarkers were detected by Western blot. The levels of Fe<sup>2+</sup>, ROS, MDA, SOD, and GSH in cells were detected by assay kits. Fluorescent probe was used to monitor the intracellular lipid peroxidation level. The binding of APEX1 and amyloid precursor protein (APP) was validated by Co-IP. The expressions of p53/xCT pathway proteins were examined by Western blot.</div></div><div><h3>Results</h3><div>The results showed that APEX1 was highly expressed in ccRCC tissues and positively correlated with poor prognosis. Silencing of APEX1 inhibited the proliferation, invasion, and migration of Caki-1 cells and induced cell cycle arrest. This silencing also led to increased levels of intracellular Fe<sup>2+</sup>, lipid peroxidation, and ROS, thereby inducing cell ferroptosis. APEX1 could bind to APP, and their expressions were negatively correlated. Silencing of APP reversed the inhibition effects of APEX1 silencing on proliferation, invasion, migration, and cell cycle in Caki-1 cells. Moreover, silencing of APEX1 up-regulated the p53/xCT signaling by binding to APP, thereby promoting ferroptosis.</div></div><div><h3>Conclusion</h3><div>In summary, silencing of APEX1 promotes ferroptosis and inhibits the malignant progression of ccRCC, potentially through APP-mediated activation of p53/AKT signaling, providing a novel therapeutic strategy for ccRCC treatment.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"445 1\",\"pages\":\"Article 114409\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725000059\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725000059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Silencing of APEX1 triggers ferroptosis in clear cell renal cell carcinoma via APP-mediated activation of p53/xCT signaling
Background
Apurinic/apyrimidinic endodeoxyribonuclease 1 (APEX1) is involved in regulating the proliferation, invasion, migration, and other malignant progression of various cancer cells. However, its mechanism in clear cell renal cell carcinoma (ccRCC) remains unclear.
Methods
UALCAN database was performed to predict APEX1 expression in ccRCC. CCK-8, colony formation, EdU, wound healing, transwell, and flow cytometry assays were used to assess cell proliferation, migration, invasion, and cell cycle. Expressions of cell cycle proteins and ferroptosis biomarkers were detected by Western blot. The levels of Fe2+, ROS, MDA, SOD, and GSH in cells were detected by assay kits. Fluorescent probe was used to monitor the intracellular lipid peroxidation level. The binding of APEX1 and amyloid precursor protein (APP) was validated by Co-IP. The expressions of p53/xCT pathway proteins were examined by Western blot.
Results
The results showed that APEX1 was highly expressed in ccRCC tissues and positively correlated with poor prognosis. Silencing of APEX1 inhibited the proliferation, invasion, and migration of Caki-1 cells and induced cell cycle arrest. This silencing also led to increased levels of intracellular Fe2+, lipid peroxidation, and ROS, thereby inducing cell ferroptosis. APEX1 could bind to APP, and their expressions were negatively correlated. Silencing of APP reversed the inhibition effects of APEX1 silencing on proliferation, invasion, migration, and cell cycle in Caki-1 cells. Moreover, silencing of APEX1 up-regulated the p53/xCT signaling by binding to APP, thereby promoting ferroptosis.
Conclusion
In summary, silencing of APEX1 promotes ferroptosis and inhibits the malignant progression of ccRCC, potentially through APP-mediated activation of p53/AKT signaling, providing a novel therapeutic strategy for ccRCC treatment.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.