{"title":"利用自然语言处理和机器学习方法在电子健康/医疗记录中检测药物不良事件:范围审查。","authors":"Su Golder, Dongfang Xu, Karen O'Connor, Yunwen Wang, Mahak Batra, Graciela Gonzalez Hernandez","doi":"10.1007/s40264-024-01505-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Natural language processing (NLP) and machine learning (ML) techniques may help harness unstructured free-text electronic health record (EHR) data to detect adverse drug events (ADEs) and thus improve pharmacovigilance. However, evidence of their real-world effectiveness remains unclear.</p><p><strong>Objective: </strong>To summarise the evidence on the effectiveness of NLP/ML in detecting ADEs from unstructured EHR data and ultimately improve pharmacovigilance in comparison to other data sources.</p><p><strong>Methods: </strong>A scoping review was conducted by searching six databases in July 2023. Studies leveraging NLP/ML to identify ADEs from EHR were included. Titles/abstracts were screened by two independent researchers as were full-text articles. Data extraction was conducted by one researcher and checked by another. A narrative synthesis summarises the research techniques, ADEs analysed, model performance and pharmacovigilance impacts.</p><p><strong>Results: </strong>Seven studies met the inclusion criteria covering a wide range of ADEs and medications. The utilisation of rule-based NLP, statistical models, and deep learning approaches was observed. Natural language processing/ML techniques with unstructured data improved the detection of under-reported adverse events and safety signals. However, substantial variability was noted in the techniques and evaluation methods employed across the different studies and limitations exist in integrating the findings into practice.</p><p><strong>Conclusions: </strong>Natural language processing (NLP) and machine learning (ML) have promising possibilities in extracting valuable insights with regard to pharmacovigilance from unstructured EHR data. These approaches have demonstrated proficiency in identifying specific adverse events and uncovering previously unknown safety signals that would not have been apparent through structured data alone. Nevertheless, challenges such as the absence of standardised methodologies and validation criteria obstruct the widespread adoption of NLP/ML for pharmacovigilance leveraging of unstructured EHR data.</p>","PeriodicalId":11382,"journal":{"name":"Drug Safety","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Natural Language Processing and Machine Learning Methods for Adverse Drug Event Detection in Electronic Health/Medical Records: A Scoping Review.\",\"authors\":\"Su Golder, Dongfang Xu, Karen O'Connor, Yunwen Wang, Mahak Batra, Graciela Gonzalez Hernandez\",\"doi\":\"10.1007/s40264-024-01505-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Natural language processing (NLP) and machine learning (ML) techniques may help harness unstructured free-text electronic health record (EHR) data to detect adverse drug events (ADEs) and thus improve pharmacovigilance. However, evidence of their real-world effectiveness remains unclear.</p><p><strong>Objective: </strong>To summarise the evidence on the effectiveness of NLP/ML in detecting ADEs from unstructured EHR data and ultimately improve pharmacovigilance in comparison to other data sources.</p><p><strong>Methods: </strong>A scoping review was conducted by searching six databases in July 2023. Studies leveraging NLP/ML to identify ADEs from EHR were included. Titles/abstracts were screened by two independent researchers as were full-text articles. Data extraction was conducted by one researcher and checked by another. A narrative synthesis summarises the research techniques, ADEs analysed, model performance and pharmacovigilance impacts.</p><p><strong>Results: </strong>Seven studies met the inclusion criteria covering a wide range of ADEs and medications. The utilisation of rule-based NLP, statistical models, and deep learning approaches was observed. Natural language processing/ML techniques with unstructured data improved the detection of under-reported adverse events and safety signals. However, substantial variability was noted in the techniques and evaluation methods employed across the different studies and limitations exist in integrating the findings into practice.</p><p><strong>Conclusions: </strong>Natural language processing (NLP) and machine learning (ML) have promising possibilities in extracting valuable insights with regard to pharmacovigilance from unstructured EHR data. These approaches have demonstrated proficiency in identifying specific adverse events and uncovering previously unknown safety signals that would not have been apparent through structured data alone. Nevertheless, challenges such as the absence of standardised methodologies and validation criteria obstruct the widespread adoption of NLP/ML for pharmacovigilance leveraging of unstructured EHR data.</p>\",\"PeriodicalId\":11382,\"journal\":{\"name\":\"Drug Safety\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Safety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40264-024-01505-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Safety","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40264-024-01505-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Leveraging Natural Language Processing and Machine Learning Methods for Adverse Drug Event Detection in Electronic Health/Medical Records: A Scoping Review.
Background: Natural language processing (NLP) and machine learning (ML) techniques may help harness unstructured free-text electronic health record (EHR) data to detect adverse drug events (ADEs) and thus improve pharmacovigilance. However, evidence of their real-world effectiveness remains unclear.
Objective: To summarise the evidence on the effectiveness of NLP/ML in detecting ADEs from unstructured EHR data and ultimately improve pharmacovigilance in comparison to other data sources.
Methods: A scoping review was conducted by searching six databases in July 2023. Studies leveraging NLP/ML to identify ADEs from EHR were included. Titles/abstracts were screened by two independent researchers as were full-text articles. Data extraction was conducted by one researcher and checked by another. A narrative synthesis summarises the research techniques, ADEs analysed, model performance and pharmacovigilance impacts.
Results: Seven studies met the inclusion criteria covering a wide range of ADEs and medications. The utilisation of rule-based NLP, statistical models, and deep learning approaches was observed. Natural language processing/ML techniques with unstructured data improved the detection of under-reported adverse events and safety signals. However, substantial variability was noted in the techniques and evaluation methods employed across the different studies and limitations exist in integrating the findings into practice.
Conclusions: Natural language processing (NLP) and machine learning (ML) have promising possibilities in extracting valuable insights with regard to pharmacovigilance from unstructured EHR data. These approaches have demonstrated proficiency in identifying specific adverse events and uncovering previously unknown safety signals that would not have been apparent through structured data alone. Nevertheless, challenges such as the absence of standardised methodologies and validation criteria obstruct the widespread adoption of NLP/ML for pharmacovigilance leveraging of unstructured EHR data.
期刊介绍:
Drug Safety is the official journal of the International Society of Pharmacovigilance. The journal includes:
Overviews of contentious or emerging issues.
Comprehensive narrative reviews that provide an authoritative source of information on epidemiology, clinical features, prevention and management of adverse effects of individual drugs and drug classes.
In-depth benefit-risk assessment of adverse effect and efficacy data for a drug in a defined therapeutic area.
Systematic reviews (with or without meta-analyses) that collate empirical evidence to answer a specific research question, using explicit, systematic methods as outlined by the PRISMA statement.
Original research articles reporting the results of well-designed studies in disciplines such as pharmacoepidemiology, pharmacovigilance, pharmacology and toxicology, and pharmacogenomics.
Editorials and commentaries on topical issues.
Additional digital features (including animated abstracts, video abstracts, slide decks, audio slides, instructional videos, infographics, podcasts and animations) can be published with articles; these are designed to increase the visibility, readership and educational value of the journal’s content. In addition, articles published in Drug Safety Drugs may be accompanied by plain language summaries to assist readers who have some knowledge of, but not in-depth expertise in, the area to understand important medical advances.