超声牙周成像解剖标志自动识别的机器学习。

IF 2.9 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Baiyan Qi, Lekshmi Sasi, Suhel Khan, Jordan Luo, Casey Chen, Keivan Rahmani, Zeinab Jahed, Jesse V Jokerst
{"title":"超声牙周成像解剖标志自动识别的机器学习。","authors":"Baiyan Qi, Lekshmi Sasi, Suhel Khan, Jordan Luo, Casey Chen, Keivan Rahmani, Zeinab Jahed, Jesse V Jokerst","doi":"10.1093/dmfr/twaf001","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To identify landmarks in ultrasound periodontal images and automate the image-based measurements of gingival recession (iGR), gingival height (iGH), and alveolar bone level (iABL) using machine learning.</p><p><strong>Methods: </strong>We imaged 184 teeth from 29 human subjects. The dataset included 1580 frames for training and validating the U-Net convolutional neural network machine learning model, and 250 frames from new teeth that were not used in training for testing the generalization performance. The predicted landmarks, including the tooth, gingiva, bone, gingival margin (GM), cementoenamel junction (CEJ), and alveolar bone crest (ABC), were compared to manual annotations. We further demonstrated automated measurements of the clinical metrics iGR, iGH, and iABL.</p><p><strong>Results: </strong>Over 98% of predicted GM, CEJ, and ABC distances are within 200 µm of the manual annotation. Bland-Altman analysis revealed biases (bias of machine learning vs ground truth) of -0.1 µm, -37.6 µm, and -40.9 µm, with 95% limits of agreement of [-281.3, 281.0] µm, [-203.1, 127.9] µm, and [-297.6, 215.8] µm for iGR, iGH, and iABL, respectively, when compared to manual annotations. On the test dataset, the biases were 167.5 µm, 40.1 µm, and 78.7 µm with 95% CIs of [-1175 to 1510] µm, [-910.3 to 990.4] µm, and [-1954 to 1796] µm for iGR, iGH, and iABL, respectively.</p><p><strong>Conclusions: </strong>The proposed machine learning model demonstrates robust prediction performance, with the potential to enhance the efficiency of clinical periodontal diagnosis by automating landmark identification and clinical metrics measurements.</p>","PeriodicalId":11261,"journal":{"name":"Dento maxillo facial radiology","volume":" ","pages":"210-221"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879227/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine learning for automated identification of anatomical landmarks in ultrasound periodontal imaging.\",\"authors\":\"Baiyan Qi, Lekshmi Sasi, Suhel Khan, Jordan Luo, Casey Chen, Keivan Rahmani, Zeinab Jahed, Jesse V Jokerst\",\"doi\":\"10.1093/dmfr/twaf001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>To identify landmarks in ultrasound periodontal images and automate the image-based measurements of gingival recession (iGR), gingival height (iGH), and alveolar bone level (iABL) using machine learning.</p><p><strong>Methods: </strong>We imaged 184 teeth from 29 human subjects. The dataset included 1580 frames for training and validating the U-Net convolutional neural network machine learning model, and 250 frames from new teeth that were not used in training for testing the generalization performance. The predicted landmarks, including the tooth, gingiva, bone, gingival margin (GM), cementoenamel junction (CEJ), and alveolar bone crest (ABC), were compared to manual annotations. We further demonstrated automated measurements of the clinical metrics iGR, iGH, and iABL.</p><p><strong>Results: </strong>Over 98% of predicted GM, CEJ, and ABC distances are within 200 µm of the manual annotation. Bland-Altman analysis revealed biases (bias of machine learning vs ground truth) of -0.1 µm, -37.6 µm, and -40.9 µm, with 95% limits of agreement of [-281.3, 281.0] µm, [-203.1, 127.9] µm, and [-297.6, 215.8] µm for iGR, iGH, and iABL, respectively, when compared to manual annotations. On the test dataset, the biases were 167.5 µm, 40.1 µm, and 78.7 µm with 95% CIs of [-1175 to 1510] µm, [-910.3 to 990.4] µm, and [-1954 to 1796] µm for iGR, iGH, and iABL, respectively.</p><p><strong>Conclusions: </strong>The proposed machine learning model demonstrates robust prediction performance, with the potential to enhance the efficiency of clinical periodontal diagnosis by automating landmark identification and clinical metrics measurements.</p>\",\"PeriodicalId\":11261,\"journal\":{\"name\":\"Dento maxillo facial radiology\",\"volume\":\" \",\"pages\":\"210-221\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dento maxillo facial radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/dmfr/twaf001\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dento maxillo facial radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/dmfr/twaf001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:识别超声牙周图像中的标志,并利用机器学习自动测量牙龈退行(iGR)、牙龈高度(iGH)和牙槽骨水平(iABL)。方法:对29名受试者的184颗牙齿进行成像。该数据集包括用于训练和验证U-Net CNN机器学习模型的1580帧,以及未用于训练的新牙齿的250帧,用于测试泛化性能。预测的标志包括牙齿、牙龈、骨骼、龈缘(GM)、牙釉质结(CEJ)和牙槽骨嵴(ABC),并与人工标注进行比较。我们进一步展示了临床指标iGR、iGH和iABL的自动测量。结果:超过98%的预测GM、CEJ和ABC距离在人工标注的200µm以内。Bland-Altman分析显示,与手动注释相比,iGR、iGH和iABL的偏差(机器学习与地面真理的偏差)分别为-0.1µm、-37.6µm和-40.9µm, 95%的一致性极限分别为[-281.3、281.0]µm、[-203.1、127.9]µm和[-297.6、215.8]µm。在测试数据集中,iGR、iGH和iABL的偏差分别为167.5µm、40.1µm和78.7µm, 95% ci分别为[-1175、1510]µm、[-910.3、990.4]µm和[-1954、1796]µm。结论:提出的机器学习模型具有强大的预测性能,有可能通过自动化地标识别和临床指标测量来提高临床牙周诊断的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning for automated identification of anatomical landmarks in ultrasound periodontal imaging.

Objectives: To identify landmarks in ultrasound periodontal images and automate the image-based measurements of gingival recession (iGR), gingival height (iGH), and alveolar bone level (iABL) using machine learning.

Methods: We imaged 184 teeth from 29 human subjects. The dataset included 1580 frames for training and validating the U-Net convolutional neural network machine learning model, and 250 frames from new teeth that were not used in training for testing the generalization performance. The predicted landmarks, including the tooth, gingiva, bone, gingival margin (GM), cementoenamel junction (CEJ), and alveolar bone crest (ABC), were compared to manual annotations. We further demonstrated automated measurements of the clinical metrics iGR, iGH, and iABL.

Results: Over 98% of predicted GM, CEJ, and ABC distances are within 200 µm of the manual annotation. Bland-Altman analysis revealed biases (bias of machine learning vs ground truth) of -0.1 µm, -37.6 µm, and -40.9 µm, with 95% limits of agreement of [-281.3, 281.0] µm, [-203.1, 127.9] µm, and [-297.6, 215.8] µm for iGR, iGH, and iABL, respectively, when compared to manual annotations. On the test dataset, the biases were 167.5 µm, 40.1 µm, and 78.7 µm with 95% CIs of [-1175 to 1510] µm, [-910.3 to 990.4] µm, and [-1954 to 1796] µm for iGR, iGH, and iABL, respectively.

Conclusions: The proposed machine learning model demonstrates robust prediction performance, with the potential to enhance the efficiency of clinical periodontal diagnosis by automating landmark identification and clinical metrics measurements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
9.10%
发文量
65
审稿时长
4-8 weeks
期刊介绍: Dentomaxillofacial Radiology (DMFR) is the journal of the International Association of Dentomaxillofacial Radiology (IADMFR) and covers the closely related fields of oral radiology and head and neck imaging. Established in 1972, DMFR is a key resource keeping dentists, radiologists and clinicians and scientists with an interest in Head and Neck imaging abreast of important research and developments in oral and maxillofacial radiology. The DMFR editorial board features a panel of international experts including Editor-in-Chief Professor Ralf Schulze. Our editorial board provide their expertise and guidance in shaping the content and direction of the journal. Quick Facts: - 2015 Impact Factor - 1.919 - Receipt to first decision - average of 3 weeks - Acceptance to online publication - average of 3 weeks - Open access option - ISSN: 0250-832X - eISSN: 1476-542X
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信