ebv编码和ebv相关mirna在肿瘤中的意义。

IF 3.8 4区 医学 Q2 GENETICS & HEREDITY
Prankur Awasthi, Arjun Singh Kohli, Manish Dwivedi, Saba Hasan
{"title":"ebv编码和ebv相关mirna在肿瘤中的意义。","authors":"Prankur Awasthi, Arjun Singh Kohli, Manish Dwivedi, Saba Hasan","doi":"10.2174/0115665232327174241211075019","DOIUrl":null,"url":null,"abstract":"<p><p>Over 90% of people are infected with the human g-herpesvirus known as the Epstein- Barr virus (EBV). Cancers, such as gastric carcinoma, non-Hodgkin's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, and Burkitt lymphoma, are thought to be linked with EBV. It is noteworthy that the first virus discovered that encodes microRNAs (miRNAs) was EBV, and these miRNAs show expression at the different phases of EBV infection. There is growing evidence that EBV-encoded miRNAs influence the growth of EBV-associated tumors. These EBV miRNAs, i.e., BamHI-H rightward fragment 1-derived microRNAs (BHRF1miRNA) and BamHI-A rightward fragment-derived microRNAs (BART miRNAs), are crucial for the persistence of viral infection and the avoidance of host defenses. Currently, significant advancements have been made in analyzing the microRNAs that are found in the duration of EBV infection, in vitro studies identified molecular targets of miRNAs and in vivo studies enhanced our understanding regarding the pathophysiology of these molecules. An extensive look into the pro-carcinogenic impact of microRNAs associated with EBV will increase our understanding of the molecular mechanisms of EBV-associated tumors. In this paper, we have highlighted the functions of miRNAs in EBV infection as well as recent developments in miRNA-based therapeutic and diagnostic approaches that could be useful for EBV-related malignancies. Significantly, targeted therapies against EBV miRNAs are advancing rapidly, with emerging approaches such as miRNA sponges, anti-miRNA oligonucleotides, and CRISPR/Cas9 technologies. These innovations indicate the imminent onset of a new era in the treatment of EBV-associated tumors.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of EBV-Encoded and EBV-Related miRNAs in Tumors.\",\"authors\":\"Prankur Awasthi, Arjun Singh Kohli, Manish Dwivedi, Saba Hasan\",\"doi\":\"10.2174/0115665232327174241211075019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over 90% of people are infected with the human g-herpesvirus known as the Epstein- Barr virus (EBV). Cancers, such as gastric carcinoma, non-Hodgkin's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, and Burkitt lymphoma, are thought to be linked with EBV. It is noteworthy that the first virus discovered that encodes microRNAs (miRNAs) was EBV, and these miRNAs show expression at the different phases of EBV infection. There is growing evidence that EBV-encoded miRNAs influence the growth of EBV-associated tumors. These EBV miRNAs, i.e., BamHI-H rightward fragment 1-derived microRNAs (BHRF1miRNA) and BamHI-A rightward fragment-derived microRNAs (BART miRNAs), are crucial for the persistence of viral infection and the avoidance of host defenses. Currently, significant advancements have been made in analyzing the microRNAs that are found in the duration of EBV infection, in vitro studies identified molecular targets of miRNAs and in vivo studies enhanced our understanding regarding the pathophysiology of these molecules. An extensive look into the pro-carcinogenic impact of microRNAs associated with EBV will increase our understanding of the molecular mechanisms of EBV-associated tumors. In this paper, we have highlighted the functions of miRNAs in EBV infection as well as recent developments in miRNA-based therapeutic and diagnostic approaches that could be useful for EBV-related malignancies. Significantly, targeted therapies against EBV miRNAs are advancing rapidly, with emerging approaches such as miRNA sponges, anti-miRNA oligonucleotides, and CRISPR/Cas9 technologies. These innovations indicate the imminent onset of a new era in the treatment of EBV-associated tumors.</p>\",\"PeriodicalId\":10798,\"journal\":{\"name\":\"Current gene therapy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current gene therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115665232327174241211075019\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232327174241211075019","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

超过90%的人感染了人类g-疱疹病毒,即eb病毒(EBV)。胃癌、非霍奇金淋巴瘤、鼻咽癌、霍奇金淋巴瘤和伯基特淋巴瘤等癌症被认为与EBV有关。值得注意的是,第一个发现编码microrna (mirna)的病毒是EBV,这些mirna在EBV感染的不同阶段都有表达。越来越多的证据表明,ebv编码的mirna影响ebv相关肿瘤的生长。这些EBV mirna,即BamHI-H向右片段1衍生的microrna (BHRF1miRNA)和BamHI-A向右片段衍生的microrna (BART mirna),对于病毒感染的持续存在和避免宿主防御至关重要。目前,在分析EBV感染期间发现的microrna方面已经取得了重大进展,体外研究确定了mirna的分子靶点,体内研究增强了我们对这些分子病理生理学的理解。深入研究与EBV相关的microrna的致癌性影响将增加我们对EBV相关肿瘤的分子机制的理解。在本文中,我们强调了mirna在EBV感染中的功能,以及基于mirna的治疗和诊断方法的最新进展,这些方法可能对EBV相关的恶性肿瘤有用。值得注意的是,针对EBV miRNA的靶向治疗正在迅速发展,如miRNA海绵、抗miRNA寡核苷酸和CRISPR/Cas9技术等新兴方法。这些创新预示着ebv相关肿瘤治疗的新时代即将到来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implications of EBV-Encoded and EBV-Related miRNAs in Tumors.

Over 90% of people are infected with the human g-herpesvirus known as the Epstein- Barr virus (EBV). Cancers, such as gastric carcinoma, non-Hodgkin's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, and Burkitt lymphoma, are thought to be linked with EBV. It is noteworthy that the first virus discovered that encodes microRNAs (miRNAs) was EBV, and these miRNAs show expression at the different phases of EBV infection. There is growing evidence that EBV-encoded miRNAs influence the growth of EBV-associated tumors. These EBV miRNAs, i.e., BamHI-H rightward fragment 1-derived microRNAs (BHRF1miRNA) and BamHI-A rightward fragment-derived microRNAs (BART miRNAs), are crucial for the persistence of viral infection and the avoidance of host defenses. Currently, significant advancements have been made in analyzing the microRNAs that are found in the duration of EBV infection, in vitro studies identified molecular targets of miRNAs and in vivo studies enhanced our understanding regarding the pathophysiology of these molecules. An extensive look into the pro-carcinogenic impact of microRNAs associated with EBV will increase our understanding of the molecular mechanisms of EBV-associated tumors. In this paper, we have highlighted the functions of miRNAs in EBV infection as well as recent developments in miRNA-based therapeutic and diagnostic approaches that could be useful for EBV-related malignancies. Significantly, targeted therapies against EBV miRNAs are advancing rapidly, with emerging approaches such as miRNA sponges, anti-miRNA oligonucleotides, and CRISPR/Cas9 technologies. These innovations indicate the imminent onset of a new era in the treatment of EBV-associated tumors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current gene therapy
Current gene therapy 医学-遗传学
CiteScore
6.70
自引率
2.80%
发文量
46
期刊介绍: Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases. Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信