虚拟DCCT:将连续血糖监测添加到预测微血管并发症的里程碑式临床试验中。

IF 5.7 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Boris P Kovatchev, Benjamin Lobo, Chiara Fabris, Mohammadreza Ganji, Anas El Fathi, Marc D Breton, Lauren Kanapka, Craig Kollman, Tadej Battelino, Roy W Beck
{"title":"虚拟DCCT:将连续血糖监测添加到预测微血管并发症的里程碑式临床试验中。","authors":"Boris P Kovatchev, Benjamin Lobo, Chiara Fabris, Mohammadreza Ganji, Anas El Fathi, Marc D Breton, Lauren Kanapka, Craig Kollman, Tadej Battelino, Roy W Beck","doi":"10.1089/dia.2024.0404","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> Using a multistep machine-learning procedure, add virtual continuous glucose monitoring (CGM) traces to the original sparse data of the landmark Diabetes Control and Complications Trial (DCCT). Assess the association of CGM metrics with the microvascular complications of type 1 diabetes observed during the DCCT and establish time-in-range (TIR) as a viable marker of glycemic control. <b><i>Research Design and Methods:</i></b> Utilizing the DCCT glycated hemoglobin data obtained every 1 or 3 months plus quarterly 7-point blood glucose (BG) profiles in a multistep procedure: (i) utilized archival BG traces to model interday BG variability and estimate glycated hemoglobin; (ii) trained across the DCCT BG profiles and associated each profile with an archival BG trace; and (iii) used previously identified CGM \"motifs\" to associate a CGM trace to a BG trace, for each DCCT participant. <b><i>Results:</i></b> TIR (70-180 mg/dL) computed from virtual CGM data over 14 days prior to each glycated hemoglobin measurement reproduced the observed glycemic control differences between the intensive and conventional DCCT groups, with TIR generally >60% and <40% in these groups, respectively. Similar to glycated hemoglobin, TIR was associated with the risk of development or progression of retinopathy, nephropathy, and neuropathy (all <i>P</i>-values <0.0001). Poisson regressions indicated that TIR predicted retinopathy and microalbuminuria similarly to the original glycated hemoglobin data. <b><i>Conclusions:</i></b> The landmark DCCT was revisited using contemporary data science methods, which allowed adding individual CGM traces to the original data. Fourteen-day CGM metrics predicted microvascular diabetes complications similarly to glycated hemoglobin. <b><i>Clinical Trials Registration:</i></b> Not a clinical trial.</p>","PeriodicalId":11159,"journal":{"name":"Diabetes technology & therapeutics","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Virtual DCCT: Adding Continuous Glucose Monitoring to a Landmark Clinical Trial for Prediction of Microvascular Complications.\",\"authors\":\"Boris P Kovatchev, Benjamin Lobo, Chiara Fabris, Mohammadreza Ganji, Anas El Fathi, Marc D Breton, Lauren Kanapka, Craig Kollman, Tadej Battelino, Roy W Beck\",\"doi\":\"10.1089/dia.2024.0404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Objective:</i></b> Using a multistep machine-learning procedure, add virtual continuous glucose monitoring (CGM) traces to the original sparse data of the landmark Diabetes Control and Complications Trial (DCCT). Assess the association of CGM metrics with the microvascular complications of type 1 diabetes observed during the DCCT and establish time-in-range (TIR) as a viable marker of glycemic control. <b><i>Research Design and Methods:</i></b> Utilizing the DCCT glycated hemoglobin data obtained every 1 or 3 months plus quarterly 7-point blood glucose (BG) profiles in a multistep procedure: (i) utilized archival BG traces to model interday BG variability and estimate glycated hemoglobin; (ii) trained across the DCCT BG profiles and associated each profile with an archival BG trace; and (iii) used previously identified CGM \\\"motifs\\\" to associate a CGM trace to a BG trace, for each DCCT participant. <b><i>Results:</i></b> TIR (70-180 mg/dL) computed from virtual CGM data over 14 days prior to each glycated hemoglobin measurement reproduced the observed glycemic control differences between the intensive and conventional DCCT groups, with TIR generally >60% and <40% in these groups, respectively. Similar to glycated hemoglobin, TIR was associated with the risk of development or progression of retinopathy, nephropathy, and neuropathy (all <i>P</i>-values <0.0001). Poisson regressions indicated that TIR predicted retinopathy and microalbuminuria similarly to the original glycated hemoglobin data. <b><i>Conclusions:</i></b> The landmark DCCT was revisited using contemporary data science methods, which allowed adding individual CGM traces to the original data. Fourteen-day CGM metrics predicted microvascular diabetes complications similarly to glycated hemoglobin. <b><i>Clinical Trials Registration:</i></b> Not a clinical trial.</p>\",\"PeriodicalId\":11159,\"journal\":{\"name\":\"Diabetes technology & therapeutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetes technology & therapeutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/dia.2024.0404\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes technology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/dia.2024.0404","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:使用多步骤机器学习程序,将虚拟连续血糖监测(CGM)痕迹添加到具有里程碑意义的糖尿病控制和并发症试验(DCCT)的原始稀疏数据中。评估CGM指标与DCCT期间观察到的1型糖尿病微血管并发症的关系,并建立时间范围(TIR)作为血糖控制的可行指标。研究设计和方法:利用每1或3个月获得的DCCT糖化血红蛋白数据,加上每季度7点血糖(BG)概况,采用多步骤程序:(i)利用档案BG痕迹来模拟日间BG变化并估计糖化血红蛋白;(ii)在DCCT BG概况中进行培训,并将每个概况与存档BG跟踪相关联;(iii)使用先前确定的CGM“基序”将每个DCCT参与者的CGM轨迹与BG轨迹联系起来。结果:在每次糖化血红蛋白测量前14天,从虚拟CGM数据计算的TIR (70-180 mg/dL)再现了强化和常规DCCT组之间观察到的血糖控制差异,TIR通常为60 - 60%,p值为p值。结论:使用现代数据科学方法重新审视了具有里程碑意义的DCCT,该方法允许在原始数据中添加单个CGM痕迹。14天CGM指标预测微血管糖尿病并发症与糖化血红蛋白相似。临床试验注册:不是临床试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Virtual DCCT: Adding Continuous Glucose Monitoring to a Landmark Clinical Trial for Prediction of Microvascular Complications.

Objective: Using a multistep machine-learning procedure, add virtual continuous glucose monitoring (CGM) traces to the original sparse data of the landmark Diabetes Control and Complications Trial (DCCT). Assess the association of CGM metrics with the microvascular complications of type 1 diabetes observed during the DCCT and establish time-in-range (TIR) as a viable marker of glycemic control. Research Design and Methods: Utilizing the DCCT glycated hemoglobin data obtained every 1 or 3 months plus quarterly 7-point blood glucose (BG) profiles in a multistep procedure: (i) utilized archival BG traces to model interday BG variability and estimate glycated hemoglobin; (ii) trained across the DCCT BG profiles and associated each profile with an archival BG trace; and (iii) used previously identified CGM "motifs" to associate a CGM trace to a BG trace, for each DCCT participant. Results: TIR (70-180 mg/dL) computed from virtual CGM data over 14 days prior to each glycated hemoglobin measurement reproduced the observed glycemic control differences between the intensive and conventional DCCT groups, with TIR generally >60% and <40% in these groups, respectively. Similar to glycated hemoglobin, TIR was associated with the risk of development or progression of retinopathy, nephropathy, and neuropathy (all P-values <0.0001). Poisson regressions indicated that TIR predicted retinopathy and microalbuminuria similarly to the original glycated hemoglobin data. Conclusions: The landmark DCCT was revisited using contemporary data science methods, which allowed adding individual CGM traces to the original data. Fourteen-day CGM metrics predicted microvascular diabetes complications similarly to glycated hemoglobin. Clinical Trials Registration: Not a clinical trial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetes technology & therapeutics
Diabetes technology & therapeutics 医学-内分泌学与代谢
CiteScore
10.60
自引率
14.80%
发文量
145
审稿时长
3-8 weeks
期刊介绍: Diabetes Technology & Therapeutics is the only peer-reviewed journal providing healthcare professionals with information on new devices, drugs, drug delivery systems, and software for managing patients with diabetes. This leading international journal delivers practical information and comprehensive coverage of cutting-edge technologies and therapeutics in the field, and each issue highlights new pharmacological and device developments to optimize patient care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信