Ángel Fernández-Sanromán, Annika Fendler, Benjy J Y Tan, Anne-Laure Cattin, Charlotte Spencer, Rachael Thompson, Lewis Au, Irene Lobon, Husayn Ahmed Pallikonda, Alice Martin, Fiona Byrne, Antonia Franz, Anna Mikolajczak, Haseeb Rahman, Zayd Tippu, Scott T C Shepherd, Hugang Feng, Daqi Deng, Andrew Rowan, Lisa Pickering, Andrew J S Furness, Kate Young, David Nicol, Sarah Maria Rudman, Tim O'Brien, Kim Edmonds, Ashish Chandra, Steve Hazell, Kevin Litchfield, George Kassiotis, James Larkin, Samra Turajlic
{"title":"追踪从原发性到转移性ccRCC的非遗传进化:TRACERx肾。","authors":"Ángel Fernández-Sanromán, Annika Fendler, Benjy J Y Tan, Anne-Laure Cattin, Charlotte Spencer, Rachael Thompson, Lewis Au, Irene Lobon, Husayn Ahmed Pallikonda, Alice Martin, Fiona Byrne, Antonia Franz, Anna Mikolajczak, Haseeb Rahman, Zayd Tippu, Scott T C Shepherd, Hugang Feng, Daqi Deng, Andrew Rowan, Lisa Pickering, Andrew J S Furness, Kate Young, David Nicol, Sarah Maria Rudman, Tim O'Brien, Kim Edmonds, Ashish Chandra, Steve Hazell, Kevin Litchfield, George Kassiotis, James Larkin, Samra Turajlic","doi":"10.1158/2159-8290.CD-24-0499","DOIUrl":null,"url":null,"abstract":"<p><p>While the key aspects of genetic evolution and their clinical implications in clear cell renal-cell carcinoma (ccRCC) are well-documented, how genetic features co-evolve with the phenotype and tumor microenvironment (TME) remains elusive. Here, through joint genomic-transcriptomic analysis of 243 samples from 79 patients recruited to the TRACERx Renal study, we identify pervasive non-genetic intratumor heterogeneity, with over 40% not attributable to genetic alterations. By integrating tumor transcriptomes and phylogenetic structures, we observe convergent evolution to specific phenotypic traits, including cell proliferation, metabolic reprogramming and overexpression of putative cGAS-STING repressors amid high aneuploidy. We also uncover a co-evolution between the tumor and the T cell repertoire, as well as a longitudinal shift in the TME from an anti-tumor to an immunosuppressive state, linked to the acquisition of recurrently late ccRCC drivers 9p loss and SETD2 mutations. Our study reveals clinically-relevant and hitherto underappreciated non-genetic evolution patterns in ccRCC.</p>","PeriodicalId":9430,"journal":{"name":"Cancer discovery","volume":" ","pages":""},"PeriodicalIF":29.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking non-genetic evolution from primary to metastatic ccRCC: TRACERx Renal.\",\"authors\":\"Ángel Fernández-Sanromán, Annika Fendler, Benjy J Y Tan, Anne-Laure Cattin, Charlotte Spencer, Rachael Thompson, Lewis Au, Irene Lobon, Husayn Ahmed Pallikonda, Alice Martin, Fiona Byrne, Antonia Franz, Anna Mikolajczak, Haseeb Rahman, Zayd Tippu, Scott T C Shepherd, Hugang Feng, Daqi Deng, Andrew Rowan, Lisa Pickering, Andrew J S Furness, Kate Young, David Nicol, Sarah Maria Rudman, Tim O'Brien, Kim Edmonds, Ashish Chandra, Steve Hazell, Kevin Litchfield, George Kassiotis, James Larkin, Samra Turajlic\",\"doi\":\"10.1158/2159-8290.CD-24-0499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>While the key aspects of genetic evolution and their clinical implications in clear cell renal-cell carcinoma (ccRCC) are well-documented, how genetic features co-evolve with the phenotype and tumor microenvironment (TME) remains elusive. Here, through joint genomic-transcriptomic analysis of 243 samples from 79 patients recruited to the TRACERx Renal study, we identify pervasive non-genetic intratumor heterogeneity, with over 40% not attributable to genetic alterations. By integrating tumor transcriptomes and phylogenetic structures, we observe convergent evolution to specific phenotypic traits, including cell proliferation, metabolic reprogramming and overexpression of putative cGAS-STING repressors amid high aneuploidy. We also uncover a co-evolution between the tumor and the T cell repertoire, as well as a longitudinal shift in the TME from an anti-tumor to an immunosuppressive state, linked to the acquisition of recurrently late ccRCC drivers 9p loss and SETD2 mutations. Our study reveals clinically-relevant and hitherto underappreciated non-genetic evolution patterns in ccRCC.</p>\",\"PeriodicalId\":9430,\"journal\":{\"name\":\"Cancer discovery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":29.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/2159-8290.CD-24-0499\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2159-8290.CD-24-0499","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Tracking non-genetic evolution from primary to metastatic ccRCC: TRACERx Renal.
While the key aspects of genetic evolution and their clinical implications in clear cell renal-cell carcinoma (ccRCC) are well-documented, how genetic features co-evolve with the phenotype and tumor microenvironment (TME) remains elusive. Here, through joint genomic-transcriptomic analysis of 243 samples from 79 patients recruited to the TRACERx Renal study, we identify pervasive non-genetic intratumor heterogeneity, with over 40% not attributable to genetic alterations. By integrating tumor transcriptomes and phylogenetic structures, we observe convergent evolution to specific phenotypic traits, including cell proliferation, metabolic reprogramming and overexpression of putative cGAS-STING repressors amid high aneuploidy. We also uncover a co-evolution between the tumor and the T cell repertoire, as well as a longitudinal shift in the TME from an anti-tumor to an immunosuppressive state, linked to the acquisition of recurrently late ccRCC drivers 9p loss and SETD2 mutations. Our study reveals clinically-relevant and hitherto underappreciated non-genetic evolution patterns in ccRCC.
期刊介绍:
Cancer Discovery publishes high-impact, peer-reviewed articles detailing significant advances in both research and clinical trials. Serving as a premier cancer information resource, the journal also features Review Articles, Perspectives, Commentaries, News stories, and Research Watch summaries to keep readers abreast of the latest findings in the field. Covering a wide range of topics, from laboratory research to clinical trials and epidemiologic studies, Cancer Discovery spans the entire spectrum of cancer research and medicine.