母体胎盘杂音的腹部声学记录降噪。

IF 1.3 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Dagbjört Helga Eiríksdóttir, Gry Grønborg Hvass, Henrik Zimmermann, Johannes Jan Struijk, Samuel Emil Schmidt
{"title":"母体胎盘杂音的腹部声学记录降噪。","authors":"Dagbjört Helga Eiríksdóttir, Gry Grønborg Hvass, Henrik Zimmermann, Johannes Jan Struijk, Samuel Emil Schmidt","doi":"10.1088/2057-1976/ada6bb","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal phonocardiography is a well-known auscultation technique for evaluation of fetal health. However, murmurs that are synchronous with the maternal heartbeat can often be heard while listening to fetal heart sounds. Maternal placental murmurs (MPM) could be used to detect maternal cardiovascular and placental abnormalities, but the recorded MPMs are often contaminated by ambient interference and noise.<i>Objective:</i>The aim of this study was to compare noise reduction methods to reduce noise in the recorded MPMs<i>. Approach:</i>1) Bandpass filtering (BPF), 2) a multichannel noise reduction (MCh) using either Wiener filter (WF), Least-mean-square or Independent component analysis, 3) a combination of BPF with wavelet transient reduction (WTR) and 4) a combination of MCh and WTR. The methods were tested on signals recorded with two microphone units placed on the abdomen of pregnant women with an electrocardiogram (ECG) recorded simultaneously. The performance was evaluated using coherence and heart cycle duration error (HCD<sub>Error</sub>) as compared with the ECG. R<i>esults</i>: The mean of the absolute HCD<sub>Error</sub>was 32.7 ms for the BPF with all methods significantly lower (p < 0.05) than BPF. The lowest errors were obtained for WTR-WF where the HCD<sub>Error</sub>ranged 16.68-17.72 ms for seven different filter orders. All methods had significantly different coherence measure compared with BPF (p < 0.05). The lowest coherence was reached with WTR-WF (filter order 640) where the mean value decreased from 0.50 for BPF to 0.03.<i>Significance:</i>These results show how noise reduction techniques such as WF combined with wavelet denoising can greatly enhance the quality of MPM recordings.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise reduction in abdominal acoustic recordings of maternal placental murmurs.\",\"authors\":\"Dagbjört Helga Eiríksdóttir, Gry Grønborg Hvass, Henrik Zimmermann, Johannes Jan Struijk, Samuel Emil Schmidt\",\"doi\":\"10.1088/2057-1976/ada6bb\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fetal phonocardiography is a well-known auscultation technique for evaluation of fetal health. However, murmurs that are synchronous with the maternal heartbeat can often be heard while listening to fetal heart sounds. Maternal placental murmurs (MPM) could be used to detect maternal cardiovascular and placental abnormalities, but the recorded MPMs are often contaminated by ambient interference and noise.<i>Objective:</i>The aim of this study was to compare noise reduction methods to reduce noise in the recorded MPMs<i>. Approach:</i>1) Bandpass filtering (BPF), 2) a multichannel noise reduction (MCh) using either Wiener filter (WF), Least-mean-square or Independent component analysis, 3) a combination of BPF with wavelet transient reduction (WTR) and 4) a combination of MCh and WTR. The methods were tested on signals recorded with two microphone units placed on the abdomen of pregnant women with an electrocardiogram (ECG) recorded simultaneously. The performance was evaluated using coherence and heart cycle duration error (HCD<sub>Error</sub>) as compared with the ECG. R<i>esults</i>: The mean of the absolute HCD<sub>Error</sub>was 32.7 ms for the BPF with all methods significantly lower (p < 0.05) than BPF. The lowest errors were obtained for WTR-WF where the HCD<sub>Error</sub>ranged 16.68-17.72 ms for seven different filter orders. All methods had significantly different coherence measure compared with BPF (p < 0.05). The lowest coherence was reached with WTR-WF (filter order 640) where the mean value decreased from 0.50 for BPF to 0.03.<i>Significance:</i>These results show how noise reduction techniques such as WF combined with wavelet denoising can greatly enhance the quality of MPM recordings.</p>\",\"PeriodicalId\":8896,\"journal\":{\"name\":\"Biomedical Physics & Engineering Express\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Physics & Engineering Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2057-1976/ada6bb\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ada6bb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

胎儿心音图是一种众所周知的用于评估胎儿健康的听诊技术。然而,在听胎儿心音时,经常可以听到与母体心跳同步的杂音。母体胎盘杂音(MPM)可用于检测母体心血管和胎盘异常,但记录的MPM常受到环境干扰和噪声的污染。目的:比较不同降噪方法对声像图降噪效果的影响。方法:1)带通滤波(BPF), 2)使用维纳滤波器(WF),最小均方或独立分量分析进行多通道降噪(MCh), 3) BPF与小波瞬态降噪(WTR)的结合,4)MCh和WTR的结合。这些方法在放置在孕妇腹部的两个麦克风单元记录的信号上进行了测试,同时记录了心电图(ECG)。与ECG相比,使用相干性和心脏周期持续时间误差(HCDError)来评估其性能。结果:BPF的绝对hcdererror均值为32.7 ms,所有方法的hcdererror均显著降低。(p)意义:这些结果表明,WF与小波去噪相结合的降噪技术可以极大地提高MPM记录的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise reduction in abdominal acoustic recordings of maternal placental murmurs.

Fetal phonocardiography is a well-known auscultation technique for evaluation of fetal health. However, murmurs that are synchronous with the maternal heartbeat can often be heard while listening to fetal heart sounds. Maternal placental murmurs (MPM) could be used to detect maternal cardiovascular and placental abnormalities, but the recorded MPMs are often contaminated by ambient interference and noise.Objective:The aim of this study was to compare noise reduction methods to reduce noise in the recorded MPMs. Approach:1) Bandpass filtering (BPF), 2) a multichannel noise reduction (MCh) using either Wiener filter (WF), Least-mean-square or Independent component analysis, 3) a combination of BPF with wavelet transient reduction (WTR) and 4) a combination of MCh and WTR. The methods were tested on signals recorded with two microphone units placed on the abdomen of pregnant women with an electrocardiogram (ECG) recorded simultaneously. The performance was evaluated using coherence and heart cycle duration error (HCDError) as compared with the ECG. Results: The mean of the absolute HCDErrorwas 32.7 ms for the BPF with all methods significantly lower (p < 0.05) than BPF. The lowest errors were obtained for WTR-WF where the HCDErrorranged 16.68-17.72 ms for seven different filter orders. All methods had significantly different coherence measure compared with BPF (p < 0.05). The lowest coherence was reached with WTR-WF (filter order 640) where the mean value decreased from 0.50 for BPF to 0.03.Significance:These results show how noise reduction techniques such as WF combined with wavelet denoising can greatly enhance the quality of MPM recordings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Physics & Engineering Express
Biomedical Physics & Engineering Express RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
2.80
自引率
0.00%
发文量
153
期刊介绍: BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信