基于网络药理学、分子对接技术、体外实验研究丁香酚治疗肝癌的作用机制。

IF 1.8 4区 医学 Q3 ONCOLOGY
Kaiping Liu, Jiuliang Jiang, Zhenyu Yu, Yunhao Wang, Min Wang, Haitao Zhu
{"title":"基于网络药理学、分子对接技术、体外实验研究丁香酚治疗肝癌的作用机制。","authors":"Kaiping Liu, Jiuliang Jiang, Zhenyu Yu, Yunhao Wang, Min Wang, Haitao Zhu","doi":"10.1097/CAD.0000000000001675","DOIUrl":null,"url":null,"abstract":"<p><p>Eugenol, a phenolic natural product with diverse pharmacological activities, remains unexplored in liver cancer. Using network pharmacology, we investigated eugenol's therapeutic mechanisms in liver cancer. We obtained eugenol's molecular structure from PubChem and screened its targets using similarity ensemble approach in Swiss Target Predictiondatabases. Overlapping genes with liver cancer-related genes from GeneCards were identified. Protein-protein interaction networks, Gene Ontology annotations, and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted. A target-pathway network revealed eugenol's interaction with 122 liver cancer-related genes. Molecular docking confirmed eugenol's high affinity for mitochondrial nicotinamide adenine dinucleotide, reduced form (NADH) dehydrogenase 1 (MT-ND1), AKT1, NDUFB7, and NADH dehydrogenase (complex I) subunit S3 (NDUFS3). Expression levels of these targets in normal liver and liver cancer tissues were examined using GEPIA2 and HPA databases. The CCK-8 assay and colony formation assay demonstrated that eugenol significantly inhibited the proliferation of hepatocellular carcinoma cells. Western blot analysis confirmed that eugenol upregulated MT-ND1 while downregulating the expression of targets such as AKT1, NDUFB7, and NDUFS3. Furthermore, it was found that eugenol could influence the expression of the AKT1 target through the AKT/p70 S6K pathway. This study provides new insights into the potential mechanisms of eugenol in liver cancer and offers novel perspectives for network-based liver cancer research.</p>","PeriodicalId":7969,"journal":{"name":"Anti-Cancer Drugs","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the mechanism of eugenol in the treatment of liver cancer based on network pharmacology, molecular docking technology, and in vitro experiments.\",\"authors\":\"Kaiping Liu, Jiuliang Jiang, Zhenyu Yu, Yunhao Wang, Min Wang, Haitao Zhu\",\"doi\":\"10.1097/CAD.0000000000001675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eugenol, a phenolic natural product with diverse pharmacological activities, remains unexplored in liver cancer. Using network pharmacology, we investigated eugenol's therapeutic mechanisms in liver cancer. We obtained eugenol's molecular structure from PubChem and screened its targets using similarity ensemble approach in Swiss Target Predictiondatabases. Overlapping genes with liver cancer-related genes from GeneCards were identified. Protein-protein interaction networks, Gene Ontology annotations, and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted. A target-pathway network revealed eugenol's interaction with 122 liver cancer-related genes. Molecular docking confirmed eugenol's high affinity for mitochondrial nicotinamide adenine dinucleotide, reduced form (NADH) dehydrogenase 1 (MT-ND1), AKT1, NDUFB7, and NADH dehydrogenase (complex I) subunit S3 (NDUFS3). Expression levels of these targets in normal liver and liver cancer tissues were examined using GEPIA2 and HPA databases. The CCK-8 assay and colony formation assay demonstrated that eugenol significantly inhibited the proliferation of hepatocellular carcinoma cells. Western blot analysis confirmed that eugenol upregulated MT-ND1 while downregulating the expression of targets such as AKT1, NDUFB7, and NDUFS3. Furthermore, it was found that eugenol could influence the expression of the AKT1 target through the AKT/p70 S6K pathway. This study provides new insights into the potential mechanisms of eugenol in liver cancer and offers novel perspectives for network-based liver cancer research.</p>\",\"PeriodicalId\":7969,\"journal\":{\"name\":\"Anti-Cancer Drugs\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-Cancer Drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/CAD.0000000000001675\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-Cancer Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/CAD.0000000000001675","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丁香酚是一种具有多种药理活性的酚类天然产物,在肝癌中的作用尚未得到充分的研究。采用网络药理学方法,研究丁香酚对肝癌的治疗作用机制。我们从PubChem中获得了丁香酚的分子结构,并在Swiss Target Predictiondatabases中使用相似集成方法筛选其靶标。发现了与GeneCards中肝癌相关基因重叠的基因。进行了蛋白质-蛋白质相互作用网络、基因本体注释和京都基因与基因组百科全书通路分析。靶通路网络揭示了丁香酚与122个肝癌相关基因的相互作用。分子对接证实丁香酚对线粒体烟酰胺腺嘌呤二核苷酸、还原形式(NADH)脱氢酶1 (MT-ND1)、AKT1、NDUFB7和NADH脱氢酶(复合体I)亚基S3 (NDUFS3)具有高亲和力。使用GEPIA2和HPA数据库检测这些靶点在正常肝脏和肝癌组织中的表达水平。CCK-8实验和集落形成实验表明丁香酚能显著抑制肝癌细胞的增殖。Western blot分析证实,丁香酚上调MT-ND1,下调AKT1、NDUFB7、NDUFS3等靶点的表达。此外,我们发现丁香酚可以通过AKT/p70 S6K通路影响AKT1靶点的表达。本研究为丁香酚在肝癌中的潜在作用机制提供了新的见解,为基于网络的肝癌研究提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the mechanism of eugenol in the treatment of liver cancer based on network pharmacology, molecular docking technology, and in vitro experiments.

Eugenol, a phenolic natural product with diverse pharmacological activities, remains unexplored in liver cancer. Using network pharmacology, we investigated eugenol's therapeutic mechanisms in liver cancer. We obtained eugenol's molecular structure from PubChem and screened its targets using similarity ensemble approach in Swiss Target Predictiondatabases. Overlapping genes with liver cancer-related genes from GeneCards were identified. Protein-protein interaction networks, Gene Ontology annotations, and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted. A target-pathway network revealed eugenol's interaction with 122 liver cancer-related genes. Molecular docking confirmed eugenol's high affinity for mitochondrial nicotinamide adenine dinucleotide, reduced form (NADH) dehydrogenase 1 (MT-ND1), AKT1, NDUFB7, and NADH dehydrogenase (complex I) subunit S3 (NDUFS3). Expression levels of these targets in normal liver and liver cancer tissues were examined using GEPIA2 and HPA databases. The CCK-8 assay and colony formation assay demonstrated that eugenol significantly inhibited the proliferation of hepatocellular carcinoma cells. Western blot analysis confirmed that eugenol upregulated MT-ND1 while downregulating the expression of targets such as AKT1, NDUFB7, and NDUFS3. Furthermore, it was found that eugenol could influence the expression of the AKT1 target through the AKT/p70 S6K pathway. This study provides new insights into the potential mechanisms of eugenol in liver cancer and offers novel perspectives for network-based liver cancer research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anti-Cancer Drugs
Anti-Cancer Drugs 医学-药学
CiteScore
3.80
自引率
0.00%
发文量
244
审稿时长
3 months
期刊介绍: Anti-Cancer Drugs reports both clinical and experimental results related to anti-cancer drugs, and welcomes contributions on anti-cancer drug design, drug delivery, pharmacology, hormonal and biological modalities and chemotherapy evaluation. An internationally refereed journal devoted to the fast publication of innovative investigations on therapeutic agents against cancer, Anti-Cancer Drugs aims to stimulate and report research on both toxic and non-toxic anti-cancer agents. Consequently, the scope on the journal will cover both conventional cytotoxic chemotherapy and hormonal or biological response modalities such as interleukins and immunotherapy. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信