Xianfang Tang, Yawen Hou, Yajie Meng, Zhaojing Wang, Changcheng Lu, Juan Lv, Xinrong Hu, Junlin Xu, Jialiang Yang
{"title":"CDPMF-DDA:药物-疾病关联预测的对比深度概率矩阵分解。","authors":"Xianfang Tang, Yawen Hou, Yajie Meng, Zhaojing Wang, Changcheng Lu, Juan Lv, Xinrong Hu, Junlin Xu, Jialiang Yang","doi":"10.1186/s12859-024-06032-w","DOIUrl":null,"url":null,"abstract":"<p><p>The process of new drug development is complex, whereas drug-disease association (DDA) prediction aims to identify new therapeutic uses for existing medications. However, existing graph contrastive learning approaches typically rely on single-view contrastive learning, which struggle to fully capture drug-disease relationships. Subsequently, we introduce a novel multi-view contrastive learning framework, named CDPMF-DDA, which enhances the model's ability to capture drug-disease associations by incorporating diverse information representations from different views. First, we decompose the original drug-disease association matrix into drug and disease feature matrices, which are then used to reconstruct the drug-disease association network, as well as the drug-drug and disease-disease similarity networks. This process effectively reduces noise in the data, establishing a reliable foundation for the networks produced. Next, we generate multiple contrastive views from both the original and generated networks. These views effectively capture hidden feature associations, significantly enhancing the model's ability to represent complex relationships. Extensive cross-validation experiments on three standard datasets show that CDPMF-DDA achieves an average AUC of 0.9475 and an AUPR of 0.5009, outperforming existing models. Additionally, case studies on Alzheimer's disease and epilepsy further validate the model's effectiveness, demonstrating its high accuracy and robustness in drug-disease association prediction. Based on a multi-view contrastive learning framework, CDPMF-DDA is capable of integrating multi-source information and effectively capturing complex drug-disease associations, making it a powerful tool for drug repositioning and the discovery of new therapeutic strategies.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"5"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708303/pdf/","citationCount":"0","resultStr":"{\"title\":\"CDPMF-DDA: contrastive deep probabilistic matrix factorization for drug-disease association prediction.\",\"authors\":\"Xianfang Tang, Yawen Hou, Yajie Meng, Zhaojing Wang, Changcheng Lu, Juan Lv, Xinrong Hu, Junlin Xu, Jialiang Yang\",\"doi\":\"10.1186/s12859-024-06032-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The process of new drug development is complex, whereas drug-disease association (DDA) prediction aims to identify new therapeutic uses for existing medications. However, existing graph contrastive learning approaches typically rely on single-view contrastive learning, which struggle to fully capture drug-disease relationships. Subsequently, we introduce a novel multi-view contrastive learning framework, named CDPMF-DDA, which enhances the model's ability to capture drug-disease associations by incorporating diverse information representations from different views. First, we decompose the original drug-disease association matrix into drug and disease feature matrices, which are then used to reconstruct the drug-disease association network, as well as the drug-drug and disease-disease similarity networks. This process effectively reduces noise in the data, establishing a reliable foundation for the networks produced. Next, we generate multiple contrastive views from both the original and generated networks. These views effectively capture hidden feature associations, significantly enhancing the model's ability to represent complex relationships. Extensive cross-validation experiments on three standard datasets show that CDPMF-DDA achieves an average AUC of 0.9475 and an AUPR of 0.5009, outperforming existing models. Additionally, case studies on Alzheimer's disease and epilepsy further validate the model's effectiveness, demonstrating its high accuracy and robustness in drug-disease association prediction. Based on a multi-view contrastive learning framework, CDPMF-DDA is capable of integrating multi-source information and effectively capturing complex drug-disease associations, making it a powerful tool for drug repositioning and the discovery of new therapeutic strategies.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"5\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11708303/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-06032-w\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06032-w","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CDPMF-DDA: contrastive deep probabilistic matrix factorization for drug-disease association prediction.
The process of new drug development is complex, whereas drug-disease association (DDA) prediction aims to identify new therapeutic uses for existing medications. However, existing graph contrastive learning approaches typically rely on single-view contrastive learning, which struggle to fully capture drug-disease relationships. Subsequently, we introduce a novel multi-view contrastive learning framework, named CDPMF-DDA, which enhances the model's ability to capture drug-disease associations by incorporating diverse information representations from different views. First, we decompose the original drug-disease association matrix into drug and disease feature matrices, which are then used to reconstruct the drug-disease association network, as well as the drug-drug and disease-disease similarity networks. This process effectively reduces noise in the data, establishing a reliable foundation for the networks produced. Next, we generate multiple contrastive views from both the original and generated networks. These views effectively capture hidden feature associations, significantly enhancing the model's ability to represent complex relationships. Extensive cross-validation experiments on three standard datasets show that CDPMF-DDA achieves an average AUC of 0.9475 and an AUPR of 0.5009, outperforming existing models. Additionally, case studies on Alzheimer's disease and epilepsy further validate the model's effectiveness, demonstrating its high accuracy and robustness in drug-disease association prediction. Based on a multi-view contrastive learning framework, CDPMF-DDA is capable of integrating multi-source information and effectively capturing complex drug-disease associations, making it a powerful tool for drug repositioning and the discovery of new therapeutic strategies.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.