{"title":"[线粒体转移对白血病进展的影响]。","authors":"Wen-Jia Fang, Biao Zhang, Tao Cheng, Hui Cheng","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2<sup>+</sup> cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry. The effects of transferred mitochondria on leukemia cells were studied by fluorescence-activated cell sorting (FACS), followed by functional experiments and bulk RNA sequencing. Finally, components within the bone marrow niche, such as mesenchymal stromal cells (MSCs) and endothelial cells (ECs), were co-cultured with leukemia cells <i>in vitro</i>. The proportion of leukemia cells that underwent mitochondrial transfer and the apoptosis level of leukemia cells were then detected by flow cytometry. The results showed that mitochondria from bone marrow cells were transferred to leukemia cells in the AML mouse model, and the proportion of mitochondrial transfer decreased with AML progression. The proportion of mitochondria transferred to leukemia stem cells (LSCs) was lower than that of mature AML cells. In AML cells receiving Dendra2<sup>+</sup> mitochondria, there was a significant increase in the levels of intracellular reactive oxygen species (ROS) and apoptosis, while the levels of protein translation and their colony-forming capacities were decreased. The transplantation of Dendra2<sup>+</sup> AML cells resulted in an extension of the survival of mice. RNA sequencing analysis demonstrated a significant downregulation of pathways related to translation, aerobic respiration and mitochondrial organization in AML cells that had received mitochondria. <i>In vitro</i> co-culture experiments indicated that MSCs within the bone marrow niche tended to transfer their mitochondria to leukemia cells and promoted the apoptosis of leukemia cells. These results indicate that in the MA9-induced AML mouse model, bone marrow niche cells can transfer mitochondria to leukemia cells, resulting in a reduction in the overall survival and function of the leukemia cells. Mitochondrial transfer in the bone marrow microenvironment may serve as a self-defensive mechanism of the host bone marrow niche cells, inhibiting the progression of AML.</p>","PeriodicalId":7134,"journal":{"name":"生理学报","volume":"76 6","pages":"943-952"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The impact of mitochondrial transfer on leukemia progression].\",\"authors\":\"Wen-Jia Fang, Biao Zhang, Tao Cheng, Hui Cheng\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2<sup>+</sup> cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry. The effects of transferred mitochondria on leukemia cells were studied by fluorescence-activated cell sorting (FACS), followed by functional experiments and bulk RNA sequencing. Finally, components within the bone marrow niche, such as mesenchymal stromal cells (MSCs) and endothelial cells (ECs), were co-cultured with leukemia cells <i>in vitro</i>. The proportion of leukemia cells that underwent mitochondrial transfer and the apoptosis level of leukemia cells were then detected by flow cytometry. The results showed that mitochondria from bone marrow cells were transferred to leukemia cells in the AML mouse model, and the proportion of mitochondrial transfer decreased with AML progression. The proportion of mitochondria transferred to leukemia stem cells (LSCs) was lower than that of mature AML cells. In AML cells receiving Dendra2<sup>+</sup> mitochondria, there was a significant increase in the levels of intracellular reactive oxygen species (ROS) and apoptosis, while the levels of protein translation and their colony-forming capacities were decreased. The transplantation of Dendra2<sup>+</sup> AML cells resulted in an extension of the survival of mice. RNA sequencing analysis demonstrated a significant downregulation of pathways related to translation, aerobic respiration and mitochondrial organization in AML cells that had received mitochondria. <i>In vitro</i> co-culture experiments indicated that MSCs within the bone marrow niche tended to transfer their mitochondria to leukemia cells and promoted the apoptosis of leukemia cells. These results indicate that in the MA9-induced AML mouse model, bone marrow niche cells can transfer mitochondria to leukemia cells, resulting in a reduction in the overall survival and function of the leukemia cells. Mitochondrial transfer in the bone marrow microenvironment may serve as a self-defensive mechanism of the host bone marrow niche cells, inhibiting the progression of AML.</p>\",\"PeriodicalId\":7134,\"journal\":{\"name\":\"生理学报\",\"volume\":\"76 6\",\"pages\":\"943-952\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生理学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生理学报","FirstCategoryId":"1087","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[The impact of mitochondrial transfer on leukemia progression].
The objective of the present study was to investigate the role and mechanism of bone marrow microenvironmental cells in regulating the mitochondrial mass of leukemia cells, and to uncover the mechanism of leukemia progression at the metabolic level. A mouse model of acute myeloid leukemia (AML) induced by the overexpression of the MLL-AF9 (MA9) fusion protein was established, and the bone marrow cells of AML mice were transplanted into mitochondrial fluorescence reporter mice expressing the Dendra2 protein (mito-Dendra2 mice). The proportion of Dendra2+ cells in bone marrow leukemia cells at different stages of AML was quantified by flow cytometry. The effects of transferred mitochondria on leukemia cells were studied by fluorescence-activated cell sorting (FACS), followed by functional experiments and bulk RNA sequencing. Finally, components within the bone marrow niche, such as mesenchymal stromal cells (MSCs) and endothelial cells (ECs), were co-cultured with leukemia cells in vitro. The proportion of leukemia cells that underwent mitochondrial transfer and the apoptosis level of leukemia cells were then detected by flow cytometry. The results showed that mitochondria from bone marrow cells were transferred to leukemia cells in the AML mouse model, and the proportion of mitochondrial transfer decreased with AML progression. The proportion of mitochondria transferred to leukemia stem cells (LSCs) was lower than that of mature AML cells. In AML cells receiving Dendra2+ mitochondria, there was a significant increase in the levels of intracellular reactive oxygen species (ROS) and apoptosis, while the levels of protein translation and their colony-forming capacities were decreased. The transplantation of Dendra2+ AML cells resulted in an extension of the survival of mice. RNA sequencing analysis demonstrated a significant downregulation of pathways related to translation, aerobic respiration and mitochondrial organization in AML cells that had received mitochondria. In vitro co-culture experiments indicated that MSCs within the bone marrow niche tended to transfer their mitochondria to leukemia cells and promoted the apoptosis of leukemia cells. These results indicate that in the MA9-induced AML mouse model, bone marrow niche cells can transfer mitochondria to leukemia cells, resulting in a reduction in the overall survival and function of the leukemia cells. Mitochondrial transfer in the bone marrow microenvironment may serve as a self-defensive mechanism of the host bone marrow niche cells, inhibiting the progression of AML.
期刊介绍:
Acta Physiologica Sinica (APS) is sponsored by the Chinese Association for Physiological Sciences and Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS), and is published bimonthly by the Science Press, China. APS publishes original research articles in the field of physiology as well as research contributions from other biomedical disciplines and proceedings of conferences and symposia of physiological sciences. Besides “Original Research Articles”, the journal also provides columns as “Brief Review”, “Rapid Communication”, “Experimental Technique”, and “Letter to the Editor”. Articles are published in either Chinese or English according to authors’ submission.