Daniel R Cuesta-Aguirre, Cristina Amor-Jimenez, Assumpció Malgosa, Cristina Santos
{"title":"远古人类线粒体DNA的死后分子损伤图谱。","authors":"Daniel R Cuesta-Aguirre, Cristina Amor-Jimenez, Assumpció Malgosa, Cristina Santos","doi":"10.1111/1755-0998.14061","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial DNA (mtDNA) analysis is crucial for understanding human population structure and genetic diversity. However, post-mortem DNA damage poses challenges, that make analysis difficult. DNA preservation is affected by environmental conditions which, among other factors, complicates the differentiation of endogenous variants from artefacts in ancient mtDNA mix profiles. This study aims to develop a molecular damage profile for ancient mtDNA that can become a useful tool in analysing mtDNA from ancient remains. A dataset of 427 whole genomes or capture of mtDNA sequences from individuals representing different historical periods and climatic regions was compiled from the ENA database. Present-day and UDG-treated ancient samples were also included and used to establish levels of damaged reads. Results indicated that samples from cold regions exhibited the lowest percentage of damaged reads, followed by arid, cold, tropical and temperate regions, with significant differences observed between cold and temperate regions. A global damage profile was generated, identifying 2933 positions (25% of the positions considered) with damage in more than 23.8% of the samples analysed, deemed as damage hotspots. Notably, 2856 of these hotspots had never been reported as damage or mutational hotspots, or heteroplasmic positions. Damage hotspot frequency by position was slightly higher in the non-coding region compared with the coding region. In conclusion, this study provides a molecular damage profile for ancient mtDNA analysis that is expected to be a valuable tool in the interpretation of mtDNA variation in ancient samples.</p>","PeriodicalId":211,"journal":{"name":"Molecular Ecology Resources","volume":" ","pages":"e14061"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Post-Mortem Molecular Damage Profile in the Ancient Human Mitochondrial DNA.\",\"authors\":\"Daniel R Cuesta-Aguirre, Cristina Amor-Jimenez, Assumpció Malgosa, Cristina Santos\",\"doi\":\"10.1111/1755-0998.14061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondrial DNA (mtDNA) analysis is crucial for understanding human population structure and genetic diversity. However, post-mortem DNA damage poses challenges, that make analysis difficult. DNA preservation is affected by environmental conditions which, among other factors, complicates the differentiation of endogenous variants from artefacts in ancient mtDNA mix profiles. This study aims to develop a molecular damage profile for ancient mtDNA that can become a useful tool in analysing mtDNA from ancient remains. A dataset of 427 whole genomes or capture of mtDNA sequences from individuals representing different historical periods and climatic regions was compiled from the ENA database. Present-day and UDG-treated ancient samples were also included and used to establish levels of damaged reads. Results indicated that samples from cold regions exhibited the lowest percentage of damaged reads, followed by arid, cold, tropical and temperate regions, with significant differences observed between cold and temperate regions. A global damage profile was generated, identifying 2933 positions (25% of the positions considered) with damage in more than 23.8% of the samples analysed, deemed as damage hotspots. Notably, 2856 of these hotspots had never been reported as damage or mutational hotspots, or heteroplasmic positions. Damage hotspot frequency by position was slightly higher in the non-coding region compared with the coding region. In conclusion, this study provides a molecular damage profile for ancient mtDNA analysis that is expected to be a valuable tool in the interpretation of mtDNA variation in ancient samples.</p>\",\"PeriodicalId\":211,\"journal\":{\"name\":\"Molecular Ecology Resources\",\"volume\":\" \",\"pages\":\"e14061\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology Resources\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1755-0998.14061\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology Resources","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1755-0998.14061","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A Post-Mortem Molecular Damage Profile in the Ancient Human Mitochondrial DNA.
Mitochondrial DNA (mtDNA) analysis is crucial for understanding human population structure and genetic diversity. However, post-mortem DNA damage poses challenges, that make analysis difficult. DNA preservation is affected by environmental conditions which, among other factors, complicates the differentiation of endogenous variants from artefacts in ancient mtDNA mix profiles. This study aims to develop a molecular damage profile for ancient mtDNA that can become a useful tool in analysing mtDNA from ancient remains. A dataset of 427 whole genomes or capture of mtDNA sequences from individuals representing different historical periods and climatic regions was compiled from the ENA database. Present-day and UDG-treated ancient samples were also included and used to establish levels of damaged reads. Results indicated that samples from cold regions exhibited the lowest percentage of damaged reads, followed by arid, cold, tropical and temperate regions, with significant differences observed between cold and temperate regions. A global damage profile was generated, identifying 2933 positions (25% of the positions considered) with damage in more than 23.8% of the samples analysed, deemed as damage hotspots. Notably, 2856 of these hotspots had never been reported as damage or mutational hotspots, or heteroplasmic positions. Damage hotspot frequency by position was slightly higher in the non-coding region compared with the coding region. In conclusion, this study provides a molecular damage profile for ancient mtDNA analysis that is expected to be a valuable tool in the interpretation of mtDNA variation in ancient samples.
期刊介绍:
Molecular Ecology Resources promotes the creation of comprehensive resources for the scientific community, encompassing computer programs, statistical and molecular advancements, and a diverse array of molecular tools. Serving as a conduit for disseminating these resources, the journal targets a broad audience of researchers in the fields of evolution, ecology, and conservation. Articles in Molecular Ecology Resources are crafted to support investigations tackling significant questions within these disciplines.
In addition to original resource articles, Molecular Ecology Resources features Reviews, Opinions, and Comments relevant to the field. The journal also periodically releases Special Issues focusing on resource development within specific areas.