Prabhat Sahu, Sk Imadul Islam, Rajib Kumar Mitra, Dipak K Palit
{"title":"d -荧光素激发态下超快质子转移动力学的完整描述。","authors":"Prabhat Sahu, Sk Imadul Islam, Rajib Kumar Mitra, Dipak K Palit","doi":"10.1021/acs.jpcb.4c08407","DOIUrl":null,"url":null,"abstract":"<p><p>Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol. These transient-state spectroscopic studies reveal the population of two kinds of hydrogen-bonded (HB) complexes (HBCs) in the excited singlet (S<sub>1</sub>) state─HBC-I, which is formed at the OH site of the hydroxy benzothiazole moiety with a proton-accepting solvent, and the other one is HBC-II, which is formed at the N atom site of the thiazoline moiety with a proton-donating solvent. This study provides a complete description of the mechanism of the deprotonation process in HBC-I through distinct identification and characterization of the spectroscopic properties and temporal dynamics of those transient species associated with the four stages of the ESPT process as proposed by the Eigen-Weller model. This study also identifies and characterizes HBC-II, which, however, does not participate in the deprotonation process but provides an efficient nonradiative relaxation mechanism via geminate proton recombination.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"1046-1060"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Complete Description of the Ultrafast Proton Transfer Dynamics in the Excited State of D-Luciferin.\",\"authors\":\"Prabhat Sahu, Sk Imadul Islam, Rajib Kumar Mitra, Dipak K Palit\",\"doi\":\"10.1021/acs.jpcb.4c08407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol. These transient-state spectroscopic studies reveal the population of two kinds of hydrogen-bonded (HB) complexes (HBCs) in the excited singlet (S<sub>1</sub>) state─HBC-I, which is formed at the OH site of the hydroxy benzothiazole moiety with a proton-accepting solvent, and the other one is HBC-II, which is formed at the N atom site of the thiazoline moiety with a proton-donating solvent. This study provides a complete description of the mechanism of the deprotonation process in HBC-I through distinct identification and characterization of the spectroscopic properties and temporal dynamics of those transient species associated with the four stages of the ESPT process as proposed by the Eigen-Weller model. This study also identifies and characterizes HBC-II, which, however, does not participate in the deprotonation process but provides an efficient nonradiative relaxation mechanism via geminate proton recombination.</p>\",\"PeriodicalId\":60,\"journal\":{\"name\":\"The Journal of Physical Chemistry B\",\"volume\":\" \",\"pages\":\"1046-1060\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpcb.4c08407\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08407","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Complete Description of the Ultrafast Proton Transfer Dynamics in the Excited State of D-Luciferin.
Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol. These transient-state spectroscopic studies reveal the population of two kinds of hydrogen-bonded (HB) complexes (HBCs) in the excited singlet (S1) state─HBC-I, which is formed at the OH site of the hydroxy benzothiazole moiety with a proton-accepting solvent, and the other one is HBC-II, which is formed at the N atom site of the thiazoline moiety with a proton-donating solvent. This study provides a complete description of the mechanism of the deprotonation process in HBC-I through distinct identification and characterization of the spectroscopic properties and temporal dynamics of those transient species associated with the four stages of the ESPT process as proposed by the Eigen-Weller model. This study also identifies and characterizes HBC-II, which, however, does not participate in the deprotonation process but provides an efficient nonradiative relaxation mechanism via geminate proton recombination.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.