基于黑色素结合的局部灌注碳酸酐酶抑制剂在眼部靶向递送和延长作用的发现。

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Annika Valtari, Stanislav Kalinin, Janika Jäntti, Pekka Vanhanen, Martina Hanzlikova, Arun Tonduru, Katja Stenberg, Tapani Viitala, Kati-Sisko Vellonen, Elisa Toropainen, Marika Ruponen, Arto Urtti
{"title":"基于黑色素结合的局部灌注碳酸酐酶抑制剂在眼部靶向递送和延长作用的发现。","authors":"Annika Valtari, Stanislav Kalinin, Janika Jäntti, Pekka Vanhanen, Martina Hanzlikova, Arun Tonduru, Katja Stenberg, Tapani Viitala, Kati-Sisko Vellonen, Elisa Toropainen, Marika Ruponen, Arto Urtti","doi":"10.1021/acs.molpharmaceut.4c00694","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is a vision-threatening disease that is currently treated with intraocular-pressure-reducing eyedrops that are instilled once or multiple times daily. Unfortunately, the treatment is associated with low patient adherence and suboptimal treatment outcomes. We developed carbonic anhydrase II inhibitors (CAI-II) for a prolonged reduction of intraocular pressure (IOP). The long action is based on the melanin binding of the drugs that prolongs ocular drug retention and response. Overall, 63 new CAI-II compounds were synthesized and tested for melanin binding in vitro. Carbonic anhydrase affinity and IOP reduction of selected compounds were tested in rabbits. Prolonged reduction of IOP in pigmented rabbits was associated with increasing melanin binding of the compound. Installation of a single eye drop of a high melanin binder carbonic anhydrase inhibitor (CAI) resulted in ≈2 weeks' decrease of IOP, whereas the effect lasted less than 8 h in albino rabbits. Duration of the IOP response correlated with melanin binding of the compounds. Ocular pharmacokinetics of a high melanin binder compound was studied after eye drop instillation to the rat eyes. The CAI showed prolonged drug retention in the pigmented iris-ciliary body but was rapidly eliminated from the albino rat eyes. The melanin-bound drug depot maintained effective free concentrations of CAI in the ciliary body for several days after application of a single eye drop. In conclusion, melanin binding is a useful tool in the discovery of long-acting ocular drugs.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melanin-Binding-Based Discovery of Topically Instilled Carbonic Anhydrase Inhibitors for Targeted Delivery and Prolonged Action in the Eye.\",\"authors\":\"Annika Valtari, Stanislav Kalinin, Janika Jäntti, Pekka Vanhanen, Martina Hanzlikova, Arun Tonduru, Katja Stenberg, Tapani Viitala, Kati-Sisko Vellonen, Elisa Toropainen, Marika Ruponen, Arto Urtti\",\"doi\":\"10.1021/acs.molpharmaceut.4c00694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glaucoma is a vision-threatening disease that is currently treated with intraocular-pressure-reducing eyedrops that are instilled once or multiple times daily. Unfortunately, the treatment is associated with low patient adherence and suboptimal treatment outcomes. We developed carbonic anhydrase II inhibitors (CAI-II) for a prolonged reduction of intraocular pressure (IOP). The long action is based on the melanin binding of the drugs that prolongs ocular drug retention and response. Overall, 63 new CAI-II compounds were synthesized and tested for melanin binding in vitro. Carbonic anhydrase affinity and IOP reduction of selected compounds were tested in rabbits. Prolonged reduction of IOP in pigmented rabbits was associated with increasing melanin binding of the compound. Installation of a single eye drop of a high melanin binder carbonic anhydrase inhibitor (CAI) resulted in ≈2 weeks' decrease of IOP, whereas the effect lasted less than 8 h in albino rabbits. Duration of the IOP response correlated with melanin binding of the compounds. Ocular pharmacokinetics of a high melanin binder compound was studied after eye drop instillation to the rat eyes. The CAI showed prolonged drug retention in the pigmented iris-ciliary body but was rapidly eliminated from the albino rat eyes. The melanin-bound drug depot maintained effective free concentrations of CAI in the ciliary body for several days after application of a single eye drop. In conclusion, melanin binding is a useful tool in the discovery of long-acting ocular drugs.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.4c00694\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c00694","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

青光眼是一种威胁视力的疾病,目前的治疗方法是每天滴入一次或多次眼压降眼液。不幸的是,这种治疗与低患者依从性和次优治疗结果相关。我们开发了碳酸酐酶II抑制剂(CAI-II)用于长期降低眼压(IOP)。长效作用是基于药物的黑色素结合,延长眼部药物保留和反应。总共合成了63个新的CAI-II化合物,并在体外测试了它们的黑色素结合能力。对所选化合物的碳酸酐酶亲和力和眼压降低率进行了家兔实验。色素沉着家兔IOP的长期降低与该化合物的黑色素结合增加有关。单滴高黑色素结合物碳酸酐酶抑制剂(CAI)可使眼压降低约2周,而白化兔的效果持续时间不到8小时。IOP反应的持续时间与化合物的黑色素结合有关。研究了一种高黑色素结合剂化合物滴注大鼠眼后的眼药动学。CAI在色素沉着的虹膜-睫状体中表现出长时间的药物滞留,但在白化大鼠眼睛中迅速消除。在滴一滴眼液后,黑色素结合药物库在睫状体中维持有效的游离CAI浓度数天。总之,黑色素结合是发现长效眼科药物的一个有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Melanin-Binding-Based Discovery of Topically Instilled Carbonic Anhydrase Inhibitors for Targeted Delivery and Prolonged Action in the Eye.

Glaucoma is a vision-threatening disease that is currently treated with intraocular-pressure-reducing eyedrops that are instilled once or multiple times daily. Unfortunately, the treatment is associated with low patient adherence and suboptimal treatment outcomes. We developed carbonic anhydrase II inhibitors (CAI-II) for a prolonged reduction of intraocular pressure (IOP). The long action is based on the melanin binding of the drugs that prolongs ocular drug retention and response. Overall, 63 new CAI-II compounds were synthesized and tested for melanin binding in vitro. Carbonic anhydrase affinity and IOP reduction of selected compounds were tested in rabbits. Prolonged reduction of IOP in pigmented rabbits was associated with increasing melanin binding of the compound. Installation of a single eye drop of a high melanin binder carbonic anhydrase inhibitor (CAI) resulted in ≈2 weeks' decrease of IOP, whereas the effect lasted less than 8 h in albino rabbits. Duration of the IOP response correlated with melanin binding of the compounds. Ocular pharmacokinetics of a high melanin binder compound was studied after eye drop instillation to the rat eyes. The CAI showed prolonged drug retention in the pigmented iris-ciliary body but was rapidly eliminated from the albino rat eyes. The melanin-bound drug depot maintained effective free concentrations of CAI in the ciliary body for several days after application of a single eye drop. In conclusion, melanin binding is a useful tool in the discovery of long-acting ocular drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信