利用深度学习集体变量增强rna -肽结合的采样模拟。

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Nisha Kumari, Sonam, Tarak Karmakar
{"title":"利用深度学习集体变量增强rna -肽结合的采样模拟。","authors":"Nisha Kumari, Sonam, Tarak Karmakar","doi":"10.1021/acs.jcim.4c01438","DOIUrl":null,"url":null,"abstract":"<p><p>Enhanced sampling (ES) simulations of biomolecular recognition, such as binding small molecules to proteins and nucleic acid targets, protein-protein association, and protein-nucleic acid interactions, have gained significant attention in the simulation community because of their ability to sample long-time scale processes. However, a key challenge in implementing collective variable (CV)-based enhanced sampling methods is the selection of appropriate CVs that can distinguish the system's metastable states and, when biased, can effectively sample these states. This challenge is particularly acute when the binding of a flexible molecule to a conformationally rich host molecule is simulated, such as the binding of a peptide to an RNA. In such cases, a large number of CVs are required to capture the conformations of both the host and the guest as well as the binding process. Using such a large number of descriptors is impractical in any enhanced sampling simulation method. In our work, we used the recently developed deep targeted discriminant analysis (Deep-TDA) method to design CVs to study the binding of a cyclic peptide, L22, to a TAR RNA of HIV, which is a prototypical system. The Deep-TDA CV, obtained from a nonlinear combination of important contact pairs between the L22 peptide and the host RNA backbone atoms, along with the RNA apical loop RMSD as the second CV were used in the on-the-fly probability-based enhanced sampling (OPES) simulation to sample the reversible binding and unbinding of the L22 peptide to the TAR RNA target. The OPES simulation delineated the mechanism of peptide binding and unbinding to and from the RNA and enabled the calculation of the underlying free energy landscape. Our results demonstrate the potential of the Deep-TDA method for designing CVs to study complex biomolecular recognition processes.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"563-570"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Sampling Simulations of RNA-Peptide Binding Using Deep Learning Collective Variables.\",\"authors\":\"Nisha Kumari, Sonam, Tarak Karmakar\",\"doi\":\"10.1021/acs.jcim.4c01438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enhanced sampling (ES) simulations of biomolecular recognition, such as binding small molecules to proteins and nucleic acid targets, protein-protein association, and protein-nucleic acid interactions, have gained significant attention in the simulation community because of their ability to sample long-time scale processes. However, a key challenge in implementing collective variable (CV)-based enhanced sampling methods is the selection of appropriate CVs that can distinguish the system's metastable states and, when biased, can effectively sample these states. This challenge is particularly acute when the binding of a flexible molecule to a conformationally rich host molecule is simulated, such as the binding of a peptide to an RNA. In such cases, a large number of CVs are required to capture the conformations of both the host and the guest as well as the binding process. Using such a large number of descriptors is impractical in any enhanced sampling simulation method. In our work, we used the recently developed deep targeted discriminant analysis (Deep-TDA) method to design CVs to study the binding of a cyclic peptide, L22, to a TAR RNA of HIV, which is a prototypical system. The Deep-TDA CV, obtained from a nonlinear combination of important contact pairs between the L22 peptide and the host RNA backbone atoms, along with the RNA apical loop RMSD as the second CV were used in the on-the-fly probability-based enhanced sampling (OPES) simulation to sample the reversible binding and unbinding of the L22 peptide to the TAR RNA target. The OPES simulation delineated the mechanism of peptide binding and unbinding to and from the RNA and enabled the calculation of the underlying free energy landscape. Our results demonstrate the potential of the Deep-TDA method for designing CVs to study complex biomolecular recognition processes.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"563-570\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01438\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01438","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

生物分子识别的增强采样(ES)模拟,如小分子与蛋白质和核酸靶标的结合、蛋白质-蛋白质结合以及蛋白质-核酸相互作用,由于能够对长时间尺度过程进行采样,在模拟界得到了极大的关注。然而,实现基于集体变量(CV)的增强采样方法的一个关键挑战是选择合适的CV,这些CV可以区分系统的亚稳态,并且当有偏倚时,可以有效地对这些状态进行采样。当模拟柔性分子与构象丰富的宿主分子的结合时,例如肽与RNA的结合,这一挑战尤为严重。在这种情况下,需要大量的cv来捕获宿主和客体的构象以及绑定过程。使用如此大量的描述符在任何增强的采样模拟方法中都是不切实际的。在我们的工作中,我们使用最近发展的深度靶向判别分析(deep - targeted discriminant analysis, deep - tda)方法设计CVs来研究环肽L22与HIV的TAR RNA的结合,这是一个原型系统。利用L22肽与宿主RNA主链原子之间重要接触对的非线性组合得到的Deep-TDA CV,以及作为第二CV的RNA顶端环RMSD,在基于概率的实时增强采样(OPES)模拟中,对L22肽与TAR RNA靶标的可逆结合和解结合进行了采样。OPES模拟描述了肽与RNA结合和解除结合的机制,并能够计算潜在的自由能格局。我们的研究结果证明了Deep-TDA方法在设计cv以研究复杂的生物分子识别过程方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced Sampling Simulations of RNA-Peptide Binding Using Deep Learning Collective Variables.

Enhanced sampling (ES) simulations of biomolecular recognition, such as binding small molecules to proteins and nucleic acid targets, protein-protein association, and protein-nucleic acid interactions, have gained significant attention in the simulation community because of their ability to sample long-time scale processes. However, a key challenge in implementing collective variable (CV)-based enhanced sampling methods is the selection of appropriate CVs that can distinguish the system's metastable states and, when biased, can effectively sample these states. This challenge is particularly acute when the binding of a flexible molecule to a conformationally rich host molecule is simulated, such as the binding of a peptide to an RNA. In such cases, a large number of CVs are required to capture the conformations of both the host and the guest as well as the binding process. Using such a large number of descriptors is impractical in any enhanced sampling simulation method. In our work, we used the recently developed deep targeted discriminant analysis (Deep-TDA) method to design CVs to study the binding of a cyclic peptide, L22, to a TAR RNA of HIV, which is a prototypical system. The Deep-TDA CV, obtained from a nonlinear combination of important contact pairs between the L22 peptide and the host RNA backbone atoms, along with the RNA apical loop RMSD as the second CV were used in the on-the-fly probability-based enhanced sampling (OPES) simulation to sample the reversible binding and unbinding of the L22 peptide to the TAR RNA target. The OPES simulation delineated the mechanism of peptide binding and unbinding to and from the RNA and enabled the calculation of the underlying free energy landscape. Our results demonstrate the potential of the Deep-TDA method for designing CVs to study complex biomolecular recognition processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信