{"title":"肽感知化学语言模型成功预测环状肽的膜扩散。","authors":"Aaron L Feller, Claus O Wilke","doi":"10.1021/acs.jcim.4c01441","DOIUrl":null,"url":null,"abstract":"<p><p>Language modeling applied to biological data has significantly advanced the prediction of membrane penetration for small-molecule drugs and natural peptides. However, accurately predicting membrane diffusion for peptides with pharmacologically relevant modifications remains a substantial challenge. Here, we introduce PeptideCLM, a peptide-focused chemical language model capable of encoding peptides with chemical modifications, unnatural or noncanonical amino acids, and cyclizations. We assess this model by predicting membrane diffusion of cyclic peptides, demonstrating greater predictive power than existing chemical language models. Our model is versatile and can be extended beyond membrane diffusion predictions to other target values. Its advantages include the ability to model macromolecules using chemical string notation, a largely unexplored domain, and a simple, flexible architecture that allows for adaptation to any peptide or other macromolecule data set.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"571-579"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptide-Aware Chemical Language Model Successfully Predicts Membrane Diffusion of Cyclic Peptides.\",\"authors\":\"Aaron L Feller, Claus O Wilke\",\"doi\":\"10.1021/acs.jcim.4c01441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Language modeling applied to biological data has significantly advanced the prediction of membrane penetration for small-molecule drugs and natural peptides. However, accurately predicting membrane diffusion for peptides with pharmacologically relevant modifications remains a substantial challenge. Here, we introduce PeptideCLM, a peptide-focused chemical language model capable of encoding peptides with chemical modifications, unnatural or noncanonical amino acids, and cyclizations. We assess this model by predicting membrane diffusion of cyclic peptides, demonstrating greater predictive power than existing chemical language models. Our model is versatile and can be extended beyond membrane diffusion predictions to other target values. Its advantages include the ability to model macromolecules using chemical string notation, a largely unexplored domain, and a simple, flexible architecture that allows for adaptation to any peptide or other macromolecule data set.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"571-579\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01441\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01441","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Peptide-Aware Chemical Language Model Successfully Predicts Membrane Diffusion of Cyclic Peptides.
Language modeling applied to biological data has significantly advanced the prediction of membrane penetration for small-molecule drugs and natural peptides. However, accurately predicting membrane diffusion for peptides with pharmacologically relevant modifications remains a substantial challenge. Here, we introduce PeptideCLM, a peptide-focused chemical language model capable of encoding peptides with chemical modifications, unnatural or noncanonical amino acids, and cyclizations. We assess this model by predicting membrane diffusion of cyclic peptides, demonstrating greater predictive power than existing chemical language models. Our model is versatile and can be extended beyond membrane diffusion predictions to other target values. Its advantages include the ability to model macromolecules using chemical string notation, a largely unexplored domain, and a simple, flexible architecture that allows for adaptation to any peptide or other macromolecule data set.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.