Jiashun Wu, Yan Liu, Ying Zhang, Xiaoyu Wang, He Yan, Yiheng Zhu, Jiangning Song, Dong-Jun Yu
{"title":"通过分组多任务学习和预先训练的蛋白质语言模型识别蛋白质核苷酸结合残基。","authors":"Jiashun Wu, Yan Liu, Ying Zhang, Xiaoyu Wang, He Yan, Yiheng Zhu, Jiangning Song, Dong-Jun Yu","doi":"10.1021/acs.jcim.4c02092","DOIUrl":null,"url":null,"abstract":"<p><p>The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge. To address these, we propose NucGMTL, a new grouped deep multi-task learning approach designed for predicting binding residues of all observed nucleotides in the BioLiP database. NucGMTL leverages pre-trained protein language models to generate robust sequence embedding and incorporates multi-scale learning along with scale-based self-attention mechanisms to capture a broader range of feature dependencies. To effectively harness the shared binding patterns across various nucleotides, deep multi-task learning is utilized to distill common representations, taking advantage of auxiliary information from similar nucleotides selected based on task grouping. Performance evaluation on benchmark data sets shows that NucGMTL achieves an average area under the Precision-Recall curve (AUPRC) of 0.594, surpassing other state-of-the-art methods. Further analyses highlight that the predominant advantage of NucGMTL can be reflected by its effective integration of grouped multi-task learning and pre-trained protein language models. The data set and source code are freely accessible at: https://github.com/jerry1984Y/NucGMTL.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"1040-1052"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Protein-Nucleotide Binding Residues via Grouped Multi-task Learning and Pre-trained Protein Language Models.\",\"authors\":\"Jiashun Wu, Yan Liu, Ying Zhang, Xiaoyu Wang, He Yan, Yiheng Zhu, Jiangning Song, Dong-Jun Yu\",\"doi\":\"10.1021/acs.jcim.4c02092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge. To address these, we propose NucGMTL, a new grouped deep multi-task learning approach designed for predicting binding residues of all observed nucleotides in the BioLiP database. NucGMTL leverages pre-trained protein language models to generate robust sequence embedding and incorporates multi-scale learning along with scale-based self-attention mechanisms to capture a broader range of feature dependencies. To effectively harness the shared binding patterns across various nucleotides, deep multi-task learning is utilized to distill common representations, taking advantage of auxiliary information from similar nucleotides selected based on task grouping. Performance evaluation on benchmark data sets shows that NucGMTL achieves an average area under the Precision-Recall curve (AUPRC) of 0.594, surpassing other state-of-the-art methods. Further analyses highlight that the predominant advantage of NucGMTL can be reflected by its effective integration of grouped multi-task learning and pre-trained protein language models. The data set and source code are freely accessible at: https://github.com/jerry1984Y/NucGMTL.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"1040-1052\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c02092\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Identifying Protein-Nucleotide Binding Residues via Grouped Multi-task Learning and Pre-trained Protein Language Models.
The accurate identification of protein-nucleotide binding residues is crucial for protein function annotation and drug discovery. Numerous computational methods have been proposed to predict these binding residues, achieving remarkable performance. However, due to the limited availability and high variability of nucleotides, predicting binding residues for diverse nucleotides remains a significant challenge. To address these, we propose NucGMTL, a new grouped deep multi-task learning approach designed for predicting binding residues of all observed nucleotides in the BioLiP database. NucGMTL leverages pre-trained protein language models to generate robust sequence embedding and incorporates multi-scale learning along with scale-based self-attention mechanisms to capture a broader range of feature dependencies. To effectively harness the shared binding patterns across various nucleotides, deep multi-task learning is utilized to distill common representations, taking advantage of auxiliary information from similar nucleotides selected based on task grouping. Performance evaluation on benchmark data sets shows that NucGMTL achieves an average area under the Precision-Recall curve (AUPRC) of 0.594, surpassing other state-of-the-art methods. Further analyses highlight that the predominant advantage of NucGMTL can be reflected by its effective integration of grouped multi-task learning and pre-trained protein language models. The data set and source code are freely accessible at: https://github.com/jerry1984Y/NucGMTL.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.