{"title":"热力学性质预测的基于图的深度学习模型:目标定义、数据分布、特征和模型架构之间的相互作用。","authors":"Bowen Deng, Thijs Stuyver","doi":"10.1021/acs.jcim.4c02014","DOIUrl":null,"url":null,"abstract":"<p><p>In this contribution, we examine the interplay between target definition, data distribution, featurization approaches, and model architectures on graph-based deep learning models for thermodynamic property prediction. Through consideration of five curated data sets, exhibiting diversity in elemental composition, multiplicity, charge state, and size, we examine the impact of each of these factors on model accuracy. We observe that target definition, i.e., using formation instead of atomization energy/enthalpy, is a decisive factor, and so is a careful selection of the featurization approach. Our attempts at directly modifying model architectures result in more modest, though not negligible, accuracy gains. Remarkably, we observe that molecule-level predictions tend to outperform atom-level increment predictions, in contrast to previous findings. Overall, this work paves the way toward the development of robust graph-based thermodynamic model architectures with more universal capabilities, i.e., architectures that can reach excellent accuracy across data sets and compound domains.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"649-659"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-Based Deep Learning Models for Thermodynamic Property Prediction: The Interplay between Target Definition, Data Distribution, Featurization, and Model Architecture.\",\"authors\":\"Bowen Deng, Thijs Stuyver\",\"doi\":\"10.1021/acs.jcim.4c02014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this contribution, we examine the interplay between target definition, data distribution, featurization approaches, and model architectures on graph-based deep learning models for thermodynamic property prediction. Through consideration of five curated data sets, exhibiting diversity in elemental composition, multiplicity, charge state, and size, we examine the impact of each of these factors on model accuracy. We observe that target definition, i.e., using formation instead of atomization energy/enthalpy, is a decisive factor, and so is a careful selection of the featurization approach. Our attempts at directly modifying model architectures result in more modest, though not negligible, accuracy gains. Remarkably, we observe that molecule-level predictions tend to outperform atom-level increment predictions, in contrast to previous findings. Overall, this work paves the way toward the development of robust graph-based thermodynamic model architectures with more universal capabilities, i.e., architectures that can reach excellent accuracy across data sets and compound domains.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"649-659\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c02014\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02014","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Graph-Based Deep Learning Models for Thermodynamic Property Prediction: The Interplay between Target Definition, Data Distribution, Featurization, and Model Architecture.
In this contribution, we examine the interplay between target definition, data distribution, featurization approaches, and model architectures on graph-based deep learning models for thermodynamic property prediction. Through consideration of five curated data sets, exhibiting diversity in elemental composition, multiplicity, charge state, and size, we examine the impact of each of these factors on model accuracy. We observe that target definition, i.e., using formation instead of atomization energy/enthalpy, is a decisive factor, and so is a careful selection of the featurization approach. Our attempts at directly modifying model architectures result in more modest, though not negligible, accuracy gains. Remarkably, we observe that molecule-level predictions tend to outperform atom-level increment predictions, in contrast to previous findings. Overall, this work paves the way toward the development of robust graph-based thermodynamic model architectures with more universal capabilities, i.e., architectures that can reach excellent accuracy across data sets and compound domains.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.