基于稀疏定位数据的室内种群建模与监测

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xiao Li;Huan Li;Hua Lu;Christian S. Jensen
{"title":"基于稀疏定位数据的室内种群建模与监测","authors":"Xiao Li;Huan Li;Hua Lu;Christian S. Jensen","doi":"10.1109/TKDE.2024.3489796","DOIUrl":null,"url":null,"abstract":"In large venues like shopping malls and airports, knowledge on the indoor populations fuels applications such as business analytics, venue management, and safety control. In this work, we provide means of modeling populations in partitions of indoor space offline and of monitoring indoor populations continuously, by using indoor positioning data. However, the low-sampling rates of indoor positioning render the data temporally and spatially sparse, which in turn renders the offline capture of indoor populations challenging. It is even more challenging to continuously monitor indoor populations, as positioning data may be missing or not ready yet at the current moment. To address these challenges, we first enable probabilistic modeling of populations in indoor space partitions as Normal distributions. Based on that, we propose two learning-based estimators for on-the-fly prediction of population distributions. Leveraging the prediction-based schemes, we provide a unified continuous query processing framework for a type of query that enables continuous monitoring of populated partitions. The framework encompasses caching and result validity mechanisms to reduce cost and maintain monitoring effectiveness. Extensive experiments on two real data sets show that the proposed estimators are able to outperform the state-of-the-art alternatives and that the query processing framework is effective and efficient.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"37 2","pages":"794-809"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Monitoring of Indoor Populations Using Sparse Positioning Data\",\"authors\":\"Xiao Li;Huan Li;Hua Lu;Christian S. Jensen\",\"doi\":\"10.1109/TKDE.2024.3489796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In large venues like shopping malls and airports, knowledge on the indoor populations fuels applications such as business analytics, venue management, and safety control. In this work, we provide means of modeling populations in partitions of indoor space offline and of monitoring indoor populations continuously, by using indoor positioning data. However, the low-sampling rates of indoor positioning render the data temporally and spatially sparse, which in turn renders the offline capture of indoor populations challenging. It is even more challenging to continuously monitor indoor populations, as positioning data may be missing or not ready yet at the current moment. To address these challenges, we first enable probabilistic modeling of populations in indoor space partitions as Normal distributions. Based on that, we propose two learning-based estimators for on-the-fly prediction of population distributions. Leveraging the prediction-based schemes, we provide a unified continuous query processing framework for a type of query that enables continuous monitoring of populated partitions. The framework encompasses caching and result validity mechanisms to reduce cost and maintain monitoring effectiveness. Extensive experiments on two real data sets show that the proposed estimators are able to outperform the state-of-the-art alternatives and that the query processing framework is effective and efficient.\",\"PeriodicalId\":13496,\"journal\":{\"name\":\"IEEE Transactions on Knowledge and Data Engineering\",\"volume\":\"37 2\",\"pages\":\"794-809\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Knowledge and Data Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740795/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10740795/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在大型场所,如购物中心和机场,室内人口的知识推动应用,如业务分析,场地管理和安全控制。在这项工作中,我们提供了利用室内定位数据对室内空间分区进行离线人口建模和连续监测室内人口的方法。然而,室内定位的低采样率使得数据在时间和空间上都很稀疏,这反过来又给室内人群的离线捕获带来了挑战。由于定位数据可能缺失或目前尚未准备好,因此持续监测室内人口更具挑战性。为了解决这些挑战,我们首先将室内空间分区中的人口作为正态分布进行概率建模。在此基础上,我们提出了两个基于学习的估计器,用于种群分布的动态预测。利用基于预测的模式,我们为一种查询类型提供了统一的连续查询处理框架,这种查询类型支持对已填充的分区进行连续监视。该框架包含缓存和结果有效性机制,以降低成本并保持监视有效性。在两个真实数据集上的大量实验表明,所提出的估计器能够优于最先进的替代方法,并且查询处理框架是有效和高效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Monitoring of Indoor Populations Using Sparse Positioning Data
In large venues like shopping malls and airports, knowledge on the indoor populations fuels applications such as business analytics, venue management, and safety control. In this work, we provide means of modeling populations in partitions of indoor space offline and of monitoring indoor populations continuously, by using indoor positioning data. However, the low-sampling rates of indoor positioning render the data temporally and spatially sparse, which in turn renders the offline capture of indoor populations challenging. It is even more challenging to continuously monitor indoor populations, as positioning data may be missing or not ready yet at the current moment. To address these challenges, we first enable probabilistic modeling of populations in indoor space partitions as Normal distributions. Based on that, we propose two learning-based estimators for on-the-fly prediction of population distributions. Leveraging the prediction-based schemes, we provide a unified continuous query processing framework for a type of query that enables continuous monitoring of populated partitions. The framework encompasses caching and result validity mechanisms to reduce cost and maintain monitoring effectiveness. Extensive experiments on two real data sets show that the proposed estimators are able to outperform the state-of-the-art alternatives and that the query processing framework is effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信