三足配体内自旋交叉驱动铁离子穿梭引起的大极化变化

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chengdong Liu, Shu-Qi Wu, Kai-Ge Gao, Jie-Sheng Hu, Yun Li, Lu-Yao Wang, Yan Xiong, Jun Tao, Zi-Shuo Yao
{"title":"三足配体内自旋交叉驱动铁离子穿梭引起的大极化变化","authors":"Chengdong Liu, Shu-Qi Wu, Kai-Ge Gao, Jie-Sheng Hu, Yun Li, Lu-Yao Wang, Yan Xiong, Jun Tao, Zi-Shuo Yao","doi":"10.1021/jacs.4c16750","DOIUrl":null,"url":null,"abstract":"The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition. This large polarization change is realized by harnessing an unusual SCO-actuated large displacement of the Fe(II) ion, encapsulated within a cage-like tripodal ligand. Owing to the uniaxially aligned polar molecular structures within the lattice, alterations in the molecular dipole moment translate to notable polarization change of the single crystal with a value of 1.9 μC cm<sup>–2</sup>. This value is 2.4 times the highest value reported for SCO compounds. The large polarization change and small dielectric constant result in an outstanding pyroelectric response in this compound, with figures of merit comparable to those of typical pyroelectric materials. The intrinsic large displacement of the Fe(II) ion provides a new strategy to effectively modulate the electric polarization via SCO magnetic switching, and the ion shuttling within a cage structure may find applications in next-generation single-molecule magnetoelectric devices.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"4 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Polarization Change Induced by Spin Crossover-Driven Fe(II) Ion Shuttling within a Tripodal Ligand\",\"authors\":\"Chengdong Liu, Shu-Qi Wu, Kai-Ge Gao, Jie-Sheng Hu, Yun Li, Lu-Yao Wang, Yan Xiong, Jun Tao, Zi-Shuo Yao\",\"doi\":\"10.1021/jacs.4c16750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition. This large polarization change is realized by harnessing an unusual SCO-actuated large displacement of the Fe(II) ion, encapsulated within a cage-like tripodal ligand. Owing to the uniaxially aligned polar molecular structures within the lattice, alterations in the molecular dipole moment translate to notable polarization change of the single crystal with a value of 1.9 μC cm<sup>–2</sup>. This value is 2.4 times the highest value reported for SCO compounds. The large polarization change and small dielectric constant result in an outstanding pyroelectric response in this compound, with figures of merit comparable to those of typical pyroelectric materials. The intrinsic large displacement of the Fe(II) ion provides a new strategy to effectively modulate the electric polarization via SCO magnetic switching, and the ion shuttling within a cage structure may find applications in next-generation single-molecule magnetoelectric devices.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c16750\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16750","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

自旋交叉(SCO)磁开关和电极化特性的集成可以产生有趣的相关磁和电现象。然而,通过合理的分子设计来实现sco诱导的极化变化仍然是一个艰巨的挑战。在此,我们提出了一种极性Fe(II)化合物,该化合物在响应热调节的低自旋↔高自旋转变时表现出实质性的极化变化。这种大的极化变化是通过利用一个不寻常的sco驱动的Fe(II)离子的大位移来实现的,该位移被封装在一个笼状的三脚架配体中。由于晶格内分子的极性结构呈单轴排列,分子偶极矩的改变导致单晶的极化变化显著,其值为1.9 μC cm-2。该值是SCO化合物报道的最高值的2.4倍。大的极化变化和小的介电常数导致该化合物具有出色的热释电响应,其优点与典型的热释电材料相当。Fe(II)离子固有的大位移特性为通过SCO磁开关有效调制电极化提供了一种新策略,离子在笼状结构内的穿梭可能在下一代单分子磁电器件中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large Polarization Change Induced by Spin Crossover-Driven Fe(II) Ion Shuttling within a Tripodal Ligand

Large Polarization Change Induced by Spin Crossover-Driven Fe(II) Ion Shuttling within a Tripodal Ligand
The integration of spin crossover (SCO) magnetic switching and electric polarization properties can engender intriguing correlated magnetic and electric phenomena. However, achieving substantial SCO-induced polarization change through rational molecular design remains a formidable challenge. Herein, we present a polar Fe(II) compound that exhibits substantial polarization change in response to a thermally regulated low-spin ↔ high-spin transition. This large polarization change is realized by harnessing an unusual SCO-actuated large displacement of the Fe(II) ion, encapsulated within a cage-like tripodal ligand. Owing to the uniaxially aligned polar molecular structures within the lattice, alterations in the molecular dipole moment translate to notable polarization change of the single crystal with a value of 1.9 μC cm–2. This value is 2.4 times the highest value reported for SCO compounds. The large polarization change and small dielectric constant result in an outstanding pyroelectric response in this compound, with figures of merit comparable to those of typical pyroelectric materials. The intrinsic large displacement of the Fe(II) ion provides a new strategy to effectively modulate the electric polarization via SCO magnetic switching, and the ion shuttling within a cage structure may find applications in next-generation single-molecule magnetoelectric devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信