Hemanoel Passarelli-Araujo, Thiago M. Venancio, William P. Hanage
{"title":"将生态多样性与细菌物种间的遗传不连续联系起来","authors":"Hemanoel Passarelli-Araujo, Thiago M. Venancio, William P. Hanage","doi":"10.1186/s13059-024-03443-z","DOIUrl":null,"url":null,"abstract":"Genetic discontinuity represents abrupt breaks in genomic identity among species. Advances in genome sequencing have enhanced our ability to track and characterize genetic discontinuity in bacterial populations. However, exploring the degree to which bacterial diversity exists as a continuum or sorted into discrete and readily defined species remains a challenge in microbial ecology. Here, we aim to quantify the genetic discontinuity ( $$\\delta$$ ) and investigate how this metric is related to ecology. We harness a dataset comprising 210,129 genomes to systematically explore genetic discontinuity patterns across several distantly related species, finding clear breakpoints which vary depending on the taxa in question. By delving into pangenome characteristics, we uncover a significant association between pangenome saturation and genetic discontinuity. Closed pangenomes are associated with more pronounced breaks, exemplified by Mycobacterium tuberculosis. Additionally, through a machine learning approach, we detect key features such as gene conservation patterns and functional annotations that significantly impact genetic discontinuity prediction. Our study clarifies bacterial genetic patterns and their ecological impacts, enhancing the delineation of species boundaries and deepening our understanding of microbial diversity.\n","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"16 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relating ecological diversity to genetic discontinuity across bacterial species\",\"authors\":\"Hemanoel Passarelli-Araujo, Thiago M. Venancio, William P. Hanage\",\"doi\":\"10.1186/s13059-024-03443-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic discontinuity represents abrupt breaks in genomic identity among species. Advances in genome sequencing have enhanced our ability to track and characterize genetic discontinuity in bacterial populations. However, exploring the degree to which bacterial diversity exists as a continuum or sorted into discrete and readily defined species remains a challenge in microbial ecology. Here, we aim to quantify the genetic discontinuity ( $$\\\\delta$$ ) and investigate how this metric is related to ecology. We harness a dataset comprising 210,129 genomes to systematically explore genetic discontinuity patterns across several distantly related species, finding clear breakpoints which vary depending on the taxa in question. By delving into pangenome characteristics, we uncover a significant association between pangenome saturation and genetic discontinuity. Closed pangenomes are associated with more pronounced breaks, exemplified by Mycobacterium tuberculosis. Additionally, through a machine learning approach, we detect key features such as gene conservation patterns and functional annotations that significantly impact genetic discontinuity prediction. Our study clarifies bacterial genetic patterns and their ecological impacts, enhancing the delineation of species boundaries and deepening our understanding of microbial diversity.\\n\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03443-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03443-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Relating ecological diversity to genetic discontinuity across bacterial species
Genetic discontinuity represents abrupt breaks in genomic identity among species. Advances in genome sequencing have enhanced our ability to track and characterize genetic discontinuity in bacterial populations. However, exploring the degree to which bacterial diversity exists as a continuum or sorted into discrete and readily defined species remains a challenge in microbial ecology. Here, we aim to quantify the genetic discontinuity ( $$\delta$$ ) and investigate how this metric is related to ecology. We harness a dataset comprising 210,129 genomes to systematically explore genetic discontinuity patterns across several distantly related species, finding clear breakpoints which vary depending on the taxa in question. By delving into pangenome characteristics, we uncover a significant association between pangenome saturation and genetic discontinuity. Closed pangenomes are associated with more pronounced breaks, exemplified by Mycobacterium tuberculosis. Additionally, through a machine learning approach, we detect key features such as gene conservation patterns and functional annotations that significantly impact genetic discontinuity prediction. Our study clarifies bacterial genetic patterns and their ecological impacts, enhancing the delineation of species boundaries and deepening our understanding of microbial diversity.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.