{"title":"含高斯噪声和脉冲噪声的盲均衡快速收敛算法","authors":"Jin Li;Wei Xing Zheng;Long Yang","doi":"10.1109/TSP.2025.3525663","DOIUrl":null,"url":null,"abstract":"This paper proposes a blind equalization algorithm for dispersive wireless communication systems that employ high throughput quadrature amplitude modulation signals under both Gaussian and impulsive noise environments. A novel cost function that combines the modulus match error function with the negative Gaussian kernel function is established to efficiently obtain the weight vector associated with the blind equalizer. Some preferable properties of the novel cost function are presented. Intensive studies show that the proposed cost function efficiently reduces the maladjustment caused by the modulus mismatch error and efficiently suppresses the negative influence resulting from large errors. Moreover, an efficient successive approximation method for minimizing the established cost function is proposed for fast searching of the optimal weight vector. Very importantly, it is proved that the proposed successive approximation method possesses superlinear convergence. Finally, extensive simulations are provided to demonstrate that the proposed blind equalizer has better performances than the existing methods under both Gaussian and impulsive noise circumstances in terms of equalization quality and equalization efficiency.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"372-385"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Converging Algorithm for Blind Equalization With Gaussian and Impulsive Noises\",\"authors\":\"Jin Li;Wei Xing Zheng;Long Yang\",\"doi\":\"10.1109/TSP.2025.3525663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a blind equalization algorithm for dispersive wireless communication systems that employ high throughput quadrature amplitude modulation signals under both Gaussian and impulsive noise environments. A novel cost function that combines the modulus match error function with the negative Gaussian kernel function is established to efficiently obtain the weight vector associated with the blind equalizer. Some preferable properties of the novel cost function are presented. Intensive studies show that the proposed cost function efficiently reduces the maladjustment caused by the modulus mismatch error and efficiently suppresses the negative influence resulting from large errors. Moreover, an efficient successive approximation method for minimizing the established cost function is proposed for fast searching of the optimal weight vector. Very importantly, it is proved that the proposed successive approximation method possesses superlinear convergence. Finally, extensive simulations are provided to demonstrate that the proposed blind equalizer has better performances than the existing methods under both Gaussian and impulsive noise circumstances in terms of equalization quality and equalization efficiency.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"73 \",\"pages\":\"372-385\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10834511/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10834511/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fast Converging Algorithm for Blind Equalization With Gaussian and Impulsive Noises
This paper proposes a blind equalization algorithm for dispersive wireless communication systems that employ high throughput quadrature amplitude modulation signals under both Gaussian and impulsive noise environments. A novel cost function that combines the modulus match error function with the negative Gaussian kernel function is established to efficiently obtain the weight vector associated with the blind equalizer. Some preferable properties of the novel cost function are presented. Intensive studies show that the proposed cost function efficiently reduces the maladjustment caused by the modulus mismatch error and efficiently suppresses the negative influence resulting from large errors. Moreover, an efficient successive approximation method for minimizing the established cost function is proposed for fast searching of the optimal weight vector. Very importantly, it is proved that the proposed successive approximation method possesses superlinear convergence. Finally, extensive simulations are provided to demonstrate that the proposed blind equalizer has better performances than the existing methods under both Gaussian and impulsive noise circumstances in terms of equalization quality and equalization efficiency.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.