Mengchu Wang;Yuhang He;Lin Peng;Xiang Song;Songlin Dong;Yihong Gong
{"title":"基于域增量胸片分类的跨域不变特征吸收和域特定特征保留","authors":"Mengchu Wang;Yuhang He;Lin Peng;Xiang Song;Songlin Dong;Yihong Gong","doi":"10.1109/TMI.2025.3525902","DOIUrl":null,"url":null,"abstract":"Chest X-ray (CXR) images have been widely adopted in clinical care and pathological diagnosis in recent years. Some advanced methods on CXR classification task achieve impressive performance by training the model statically. However, in the real clinical environment, the model needs to learn continually and this can be viewed as a domain incremental learning (DIL) problem. Due to large domain gaps, DIL is faced with catastrophic forgetting. Therefore, in this paper, we propose a Cross-domain invariant feature absorption and Domain-specific feature retention (CaD) framework. To be specific, we adopt a Cross-domain Invariant Feature Absorption (CIFA) module to learn the domain invariant knowledge and a Domain-Specific Feature Retention (DSFR) module to learn the domain-specific knowledge. The CIFA module contains the C(lass)-adapter and an absorbing strategy is used to fuse the common features among different domains. The DSFR module contains the D(omain)-adapter for each domain and it connects to the network in parallel independently to prevent forgetting. A multi-label contrastive loss (MLCL) is used in the training process and improves the class distinctiveness within each domain. We leverage publicly available large-scale datasets to simulate domain incremental learning scenarios, extensive experimental results substantiate the effectiveness of our proposed methods and it has reached state-of-the-art performance.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 5","pages":"2041-2055"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Domain Invariant Feature Absorption and Domain-Specific Feature Retention for Domain Incremental Chest X-Ray Classification\",\"authors\":\"Mengchu Wang;Yuhang He;Lin Peng;Xiang Song;Songlin Dong;Yihong Gong\",\"doi\":\"10.1109/TMI.2025.3525902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chest X-ray (CXR) images have been widely adopted in clinical care and pathological diagnosis in recent years. Some advanced methods on CXR classification task achieve impressive performance by training the model statically. However, in the real clinical environment, the model needs to learn continually and this can be viewed as a domain incremental learning (DIL) problem. Due to large domain gaps, DIL is faced with catastrophic forgetting. Therefore, in this paper, we propose a Cross-domain invariant feature absorption and Domain-specific feature retention (CaD) framework. To be specific, we adopt a Cross-domain Invariant Feature Absorption (CIFA) module to learn the domain invariant knowledge and a Domain-Specific Feature Retention (DSFR) module to learn the domain-specific knowledge. The CIFA module contains the C(lass)-adapter and an absorbing strategy is used to fuse the common features among different domains. The DSFR module contains the D(omain)-adapter for each domain and it connects to the network in parallel independently to prevent forgetting. A multi-label contrastive loss (MLCL) is used in the training process and improves the class distinctiveness within each domain. We leverage publicly available large-scale datasets to simulate domain incremental learning scenarios, extensive experimental results substantiate the effectiveness of our proposed methods and it has reached state-of-the-art performance.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 5\",\"pages\":\"2041-2055\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10836224/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10836224/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross-Domain Invariant Feature Absorption and Domain-Specific Feature Retention for Domain Incremental Chest X-Ray Classification
Chest X-ray (CXR) images have been widely adopted in clinical care and pathological diagnosis in recent years. Some advanced methods on CXR classification task achieve impressive performance by training the model statically. However, in the real clinical environment, the model needs to learn continually and this can be viewed as a domain incremental learning (DIL) problem. Due to large domain gaps, DIL is faced with catastrophic forgetting. Therefore, in this paper, we propose a Cross-domain invariant feature absorption and Domain-specific feature retention (CaD) framework. To be specific, we adopt a Cross-domain Invariant Feature Absorption (CIFA) module to learn the domain invariant knowledge and a Domain-Specific Feature Retention (DSFR) module to learn the domain-specific knowledge. The CIFA module contains the C(lass)-adapter and an absorbing strategy is used to fuse the common features among different domains. The DSFR module contains the D(omain)-adapter for each domain and it connects to the network in parallel independently to prevent forgetting. A multi-label contrastive loss (MLCL) is used in the training process and improves the class distinctiveness within each domain. We leverage publicly available large-scale datasets to simulate domain incremental learning scenarios, extensive experimental results substantiate the effectiveness of our proposed methods and it has reached state-of-the-art performance.