{"title":"genwin:物联网网络自适应管理的生成式人工智能驱动的数字孪生","authors":"Kubra Duran;Hyundong Shin;Trung Q. Duong;Berk Canberk","doi":"10.1109/TCCN.2025.3527719","DOIUrl":null,"url":null,"abstract":"The dramatic increase in smart services makes adaptive management of communication networks more critical. Especially for Internet of Things (IoT) networks, adaptive management faces several challenges, like fluctuating network conditions, heterogeneity in data sources, and rapid response capabilities. These challenges lead to performance degradation and data losses in IoT applications if not handled. Even though traditional AI algorithms are applied in most network topologies, they fall short of handling these adaptive management challenges without requiring additional software developments. Therefore, we propose a Generative AI-powered Digital Twinning (GenTwin) framework to create digital twin models with generative AI algorithms. In this framework, we design two novel mechanisms: Priority Pooling and Twin Adapter. Priority Pooling is to extract the dynamic relations within the topology before performing model training. We theoretically formulate the priority levels and corresponding weights with a novel presence parameter to present a modular architecture to increase training efficiency. The Twin Adapter is to interact with the GAI architecture and fine-tune the model for the adaptive twin modelling task in IoT networks. After creating the adaptive twin models, we test the rapid response capabilities of GenTwin with what-if analysis. According to our simulation results, we note that the proposed pooling mechanism extracts the data relations 19% more by enhancing the training accuracy. In addition, we show that GenTwin surpasses the traditional twin performance in terms of rapid response capabilities by reducing the response time 53% when the dynamicity is maximum.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"11 2","pages":"1053-1063"},"PeriodicalIF":7.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GenTwin: Generative AI-Powered Digital Twinning for Adaptive Management in IoT Networks\",\"authors\":\"Kubra Duran;Hyundong Shin;Trung Q. Duong;Berk Canberk\",\"doi\":\"10.1109/TCCN.2025.3527719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dramatic increase in smart services makes adaptive management of communication networks more critical. Especially for Internet of Things (IoT) networks, adaptive management faces several challenges, like fluctuating network conditions, heterogeneity in data sources, and rapid response capabilities. These challenges lead to performance degradation and data losses in IoT applications if not handled. Even though traditional AI algorithms are applied in most network topologies, they fall short of handling these adaptive management challenges without requiring additional software developments. Therefore, we propose a Generative AI-powered Digital Twinning (GenTwin) framework to create digital twin models with generative AI algorithms. In this framework, we design two novel mechanisms: Priority Pooling and Twin Adapter. Priority Pooling is to extract the dynamic relations within the topology before performing model training. We theoretically formulate the priority levels and corresponding weights with a novel presence parameter to present a modular architecture to increase training efficiency. The Twin Adapter is to interact with the GAI architecture and fine-tune the model for the adaptive twin modelling task in IoT networks. After creating the adaptive twin models, we test the rapid response capabilities of GenTwin with what-if analysis. According to our simulation results, we note that the proposed pooling mechanism extracts the data relations 19% more by enhancing the training accuracy. In addition, we show that GenTwin surpasses the traditional twin performance in terms of rapid response capabilities by reducing the response time 53% when the dynamicity is maximum.\",\"PeriodicalId\":13069,\"journal\":{\"name\":\"IEEE Transactions on Cognitive Communications and Networking\",\"volume\":\"11 2\",\"pages\":\"1053-1063\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10835232/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10835232/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
GenTwin: Generative AI-Powered Digital Twinning for Adaptive Management in IoT Networks
The dramatic increase in smart services makes adaptive management of communication networks more critical. Especially for Internet of Things (IoT) networks, adaptive management faces several challenges, like fluctuating network conditions, heterogeneity in data sources, and rapid response capabilities. These challenges lead to performance degradation and data losses in IoT applications if not handled. Even though traditional AI algorithms are applied in most network topologies, they fall short of handling these adaptive management challenges without requiring additional software developments. Therefore, we propose a Generative AI-powered Digital Twinning (GenTwin) framework to create digital twin models with generative AI algorithms. In this framework, we design two novel mechanisms: Priority Pooling and Twin Adapter. Priority Pooling is to extract the dynamic relations within the topology before performing model training. We theoretically formulate the priority levels and corresponding weights with a novel presence parameter to present a modular architecture to increase training efficiency. The Twin Adapter is to interact with the GAI architecture and fine-tune the model for the adaptive twin modelling task in IoT networks. After creating the adaptive twin models, we test the rapid response capabilities of GenTwin with what-if analysis. According to our simulation results, we note that the proposed pooling mechanism extracts the data relations 19% more by enhancing the training accuracy. In addition, we show that GenTwin surpasses the traditional twin performance in terms of rapid response capabilities by reducing the response time 53% when the dynamicity is maximum.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.