傅里叶-熵-影响猜想的一个新界

IF 1 2区 数学 Q1 MATHEMATICS
Xiao Han
{"title":"傅里叶-熵-影响猜想的一个新界","authors":"Xiao Han","doi":"10.1007/s00493-024-00133-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove that the Fourier entropy of an <i>n</i>-dimensional boolean function <i>f</i> can be upper-bounded by <span>\\(O(I(f)+ \\sum \\limits _{k\\in [n]}I_k(f)\\log \\frac{1}{I_k(f)})\\)</span>, where <i>I</i>(<i>f</i>) is its total influence and <span>\\(I_k(f)\\)</span> is the influence of the <i>k</i>-th coordinate. There is no strict quantitative relationship between our bound with the known bounds for the Fourier-Min-Entropy-Influence conjecture <span>\\(O(I(f)\\log I(f))\\)</span> and <span>\\(O(I(f)^2)\\)</span>. The proof is elementary and uses iterative bounds on moments of Fourier coefficients over different levels to estimate the Fourier entropy as its derivative.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"69 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Bound for the Fourier-Entropy-Influence Conjecture\",\"authors\":\"Xiao Han\",\"doi\":\"10.1007/s00493-024-00133-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we prove that the Fourier entropy of an <i>n</i>-dimensional boolean function <i>f</i> can be upper-bounded by <span>\\\\(O(I(f)+ \\\\sum \\\\limits _{k\\\\in [n]}I_k(f)\\\\log \\\\frac{1}{I_k(f)})\\\\)</span>, where <i>I</i>(<i>f</i>) is its total influence and <span>\\\\(I_k(f)\\\\)</span> is the influence of the <i>k</i>-th coordinate. There is no strict quantitative relationship between our bound with the known bounds for the Fourier-Min-Entropy-Influence conjecture <span>\\\\(O(I(f)\\\\log I(f))\\\\)</span> and <span>\\\\(O(I(f)^2)\\\\)</span>. The proof is elementary and uses iterative bounds on moments of Fourier coefficients over different levels to estimate the Fourier entropy as its derivative.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00133-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00133-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了n维布尔函数f的傅里叶熵可以上界为\(O(I(f)+ \sum \limits _{k\in [n]}I_k(f)\log \frac{1}{I_k(f)})\),其中I(f)为其总影响,\(I_k(f)\)为第k个坐标的影响。对于傅里叶-最小熵-影响猜想\(O(I(f)\log I(f))\)和\(O(I(f)^2)\),我们的界与已知界之间没有严格的定量关系。证明是初等的,并使用傅里叶系数矩在不同水平上的迭代界来估计傅里叶熵作为其导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Bound for the Fourier-Entropy-Influence Conjecture

In this paper, we prove that the Fourier entropy of an n-dimensional boolean function f can be upper-bounded by \(O(I(f)+ \sum \limits _{k\in [n]}I_k(f)\log \frac{1}{I_k(f)})\), where I(f) is its total influence and \(I_k(f)\) is the influence of the k-th coordinate. There is no strict quantitative relationship between our bound with the known bounds for the Fourier-Min-Entropy-Influence conjecture \(O(I(f)\log I(f))\) and \(O(I(f)^2)\). The proof is elementary and uses iterative bounds on moments of Fourier coefficients over different levels to estimate the Fourier entropy as its derivative.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信