分形信息密度

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Joel Ratsaby
{"title":"分形信息密度","authors":"Joel Ratsaby","doi":"10.1016/j.chaos.2025.115989","DOIUrl":null,"url":null,"abstract":"<div><div>Fractal sets are generated by simple generating formulas (iterated functions) and therefore have an almost zero algorithmic (Kolmogorov) complexity. Yet when observed as data with no knowledge of the iterated function, for instance, when observing pixel values of any region of a fractal image, the fractal set is very complex. It has rich and complicated patterns that appear at any arbitrary level of magnification. This suggests that fractal sets have a rich information content despite their essentially zero algorithmic complexity. This highlights a significant gap between algorithmic complexity of sets and their information richness. To explain this, we propose an information-based complexity measure of fractal sets. We extend a well-known notion of compression ratio of general binary sequences to two-dimensional sets and apply it to fractal sets. We introduce a notion of set information density and boundary information density, and as an application, we estimate them for two well-known fractal sets.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"192 ","pages":"Article 115989"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal information density\",\"authors\":\"Joel Ratsaby\",\"doi\":\"10.1016/j.chaos.2025.115989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fractal sets are generated by simple generating formulas (iterated functions) and therefore have an almost zero algorithmic (Kolmogorov) complexity. Yet when observed as data with no knowledge of the iterated function, for instance, when observing pixel values of any region of a fractal image, the fractal set is very complex. It has rich and complicated patterns that appear at any arbitrary level of magnification. This suggests that fractal sets have a rich information content despite their essentially zero algorithmic complexity. This highlights a significant gap between algorithmic complexity of sets and their information richness. To explain this, we propose an information-based complexity measure of fractal sets. We extend a well-known notion of compression ratio of general binary sequences to two-dimensional sets and apply it to fractal sets. We introduce a notion of set information density and boundary information density, and as an application, we estimate them for two well-known fractal sets.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"192 \",\"pages\":\"Article 115989\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925000025\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925000025","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

分形集由简单的生成公式(迭代函数)生成,因此具有几乎为零的算法(Kolmogorov)复杂性。然而,当作为不知道迭代函数的数据进行观测时,例如在观测分形图像中任意区域的像素值时,分形集是非常复杂的。它具有丰富而复杂的模式,在任意的放大水平上都能显现出来。这表明分形集具有丰富的信息内容,尽管它们的算法复杂度基本上为零。这突出了集的算法复杂性和它们的信息丰富度之间的显著差距。为了解释这一点,我们提出了一种基于信息的分形集复杂性度量。将一般二值序列压缩比的概念推广到二维集合,并应用于分形集合。引入集合信息密度和边界信息密度的概念,并应用于两个已知分形集的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractal information density
Fractal sets are generated by simple generating formulas (iterated functions) and therefore have an almost zero algorithmic (Kolmogorov) complexity. Yet when observed as data with no knowledge of the iterated function, for instance, when observing pixel values of any region of a fractal image, the fractal set is very complex. It has rich and complicated patterns that appear at any arbitrary level of magnification. This suggests that fractal sets have a rich information content despite their essentially zero algorithmic complexity. This highlights a significant gap between algorithmic complexity of sets and their information richness. To explain this, we propose an information-based complexity measure of fractal sets. We extend a well-known notion of compression ratio of general binary sequences to two-dimensional sets and apply it to fractal sets. We introduce a notion of set information density and boundary information density, and as an application, we estimate them for two well-known fractal sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信