用LISA观察随机背景的运动各向异性

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Lavinia Heisenberg, Henri Inchauspé and David Maibach
{"title":"用LISA观察随机背景的运动各向异性","authors":"Lavinia Heisenberg, Henri Inchauspé and David Maibach","doi":"10.1088/1475-7516/2025/01/044","DOIUrl":null,"url":null,"abstract":"We propose a diagnostic tool for future analyses of stochastic gravitational wave background signals of extra-galactic origin in LISA data. Next-generation gravitational wave detectors hold the capability to track unresolved gravitational waves bundled into a stochastic background. This composite background contains cosmological and astrophysical contributions, the exploration of which offers promising avenues for groundbreaking new insights into very early universe cosmology as well as late-time structure formation. In this article, we develop a full end-to-end pipeline for the extraction of extra-galactic signals, based on kinematic anisotropies arising from the galactic motion, via full-time-domain simulations of LISA's response to the gravitational wave anisotropic sky. Employing a Markov-Chain-Monte-Carlo map-making scheme, multipoles up to ℓ=2 are recovered for scale-free spectra in the case of a high signal-to-noise ratio. We demonstrate that our analysis is consistently beating sample variance and is robust against statistical and systematic errors. The impact of instrumental noise on the extraction of kinematic anisotropies is investigated, and we establish a detection threshold of ΩGW ≳ 5 × 10-8 in the presence of instrument-induced noise. Potential avenues for improvement in our methodology are highlighted.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"28 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observing kinematic anisotropies of the stochastic background with LISA\",\"authors\":\"Lavinia Heisenberg, Henri Inchauspé and David Maibach\",\"doi\":\"10.1088/1475-7516/2025/01/044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a diagnostic tool for future analyses of stochastic gravitational wave background signals of extra-galactic origin in LISA data. Next-generation gravitational wave detectors hold the capability to track unresolved gravitational waves bundled into a stochastic background. This composite background contains cosmological and astrophysical contributions, the exploration of which offers promising avenues for groundbreaking new insights into very early universe cosmology as well as late-time structure formation. In this article, we develop a full end-to-end pipeline for the extraction of extra-galactic signals, based on kinematic anisotropies arising from the galactic motion, via full-time-domain simulations of LISA's response to the gravitational wave anisotropic sky. Employing a Markov-Chain-Monte-Carlo map-making scheme, multipoles up to ℓ=2 are recovered for scale-free spectra in the case of a high signal-to-noise ratio. We demonstrate that our analysis is consistently beating sample variance and is robust against statistical and systematic errors. The impact of instrumental noise on the extraction of kinematic anisotropies is investigated, and we establish a detection threshold of ΩGW ≳ 5 × 10-8 in the presence of instrument-induced noise. Potential avenues for improvement in our methodology are highlighted.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/01/044\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/044","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种诊断工具,用于将来分析LISA数据中银河系外起源的随机引力波背景信号。下一代引力波探测器有能力追踪随机背景中未解析的引力波。这种复合背景包含了宇宙学和天体物理学的贡献,对它的探索为探索早期宇宙宇宙学和晚期结构形成提供了有希望的新途径。在本文中,我们开发了一个完整的端到端管道,用于提取星系外信号,基于星系运动产生的运动学各向异性,通过全时域模拟LISA对引力波各向异性天空的响应。采用马尔可夫链-蒙特卡罗映射方案,在高信噪比的情况下,对无标度谱恢复了高达2的多极。我们证明了我们的分析始终优于样本方差,并且对统计和系统误差具有鲁棒性。研究了仪器噪声对运动各向异性提取的影响,并建立了仪器噪声存在时的检测阈值ΩGW约5 × 10-8。强调了改进我们方法的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observing kinematic anisotropies of the stochastic background with LISA
We propose a diagnostic tool for future analyses of stochastic gravitational wave background signals of extra-galactic origin in LISA data. Next-generation gravitational wave detectors hold the capability to track unresolved gravitational waves bundled into a stochastic background. This composite background contains cosmological and astrophysical contributions, the exploration of which offers promising avenues for groundbreaking new insights into very early universe cosmology as well as late-time structure formation. In this article, we develop a full end-to-end pipeline for the extraction of extra-galactic signals, based on kinematic anisotropies arising from the galactic motion, via full-time-domain simulations of LISA's response to the gravitational wave anisotropic sky. Employing a Markov-Chain-Monte-Carlo map-making scheme, multipoles up to ℓ=2 are recovered for scale-free spectra in the case of a high signal-to-noise ratio. We demonstrate that our analysis is consistently beating sample variance and is robust against statistical and systematic errors. The impact of instrumental noise on the extraction of kinematic anisotropies is investigated, and we establish a detection threshold of ΩGW ≳ 5 × 10-8 in the presence of instrument-induced noise. Potential avenues for improvement in our methodology are highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信