{"title":"仅使用射影测量共享三部非定域序列","authors":"Yiyang Xu, Hao Sun, Fenzhuo Guo, Haifeng Dong, Qiaoyan Wen","doi":"10.1007/s11128-024-04638-w","DOIUrl":null,"url":null,"abstract":"<div><p>Bell nonlocality is a valuable resource in quantum information processing tasks. Scientists are interested in whether a single entangled state can generate a long sequence of nonlocal correlations. Previous work has accomplished sequential tripartite nonlocality sharing through unsharp measurements. In this paper, we investigate the sharing of tripartite nonlocality using only projective measurements and sharing classical randomness. For the generalized GHZ state, we have demonstrated that using unbiased measurement choices, two Charlies can share the standard tripartite nonlocality with a single Alice and a single Bob, while at most one Charlie can share the genuine tripartite nonlocality with a single Alice and a single Bob. However, with biased measurement choices, the number of Charlies sharing the genuine tripartite nonlocality can be increased to two. Nonetheless, we find that using biased measurements does not increase the number of sequential observers sharing the standard tripartite nonlocality. Moreover, we provide the feasible range of double violation for the parameters of the measurement combination probability with respect to the state.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharing tripartite nonlocality sequentially using only projective measurements\",\"authors\":\"Yiyang Xu, Hao Sun, Fenzhuo Guo, Haifeng Dong, Qiaoyan Wen\",\"doi\":\"10.1007/s11128-024-04638-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bell nonlocality is a valuable resource in quantum information processing tasks. Scientists are interested in whether a single entangled state can generate a long sequence of nonlocal correlations. Previous work has accomplished sequential tripartite nonlocality sharing through unsharp measurements. In this paper, we investigate the sharing of tripartite nonlocality using only projective measurements and sharing classical randomness. For the generalized GHZ state, we have demonstrated that using unbiased measurement choices, two Charlies can share the standard tripartite nonlocality with a single Alice and a single Bob, while at most one Charlie can share the genuine tripartite nonlocality with a single Alice and a single Bob. However, with biased measurement choices, the number of Charlies sharing the genuine tripartite nonlocality can be increased to two. Nonetheless, we find that using biased measurements does not increase the number of sequential observers sharing the standard tripartite nonlocality. Moreover, we provide the feasible range of double violation for the parameters of the measurement combination probability with respect to the state.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04638-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04638-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Sharing tripartite nonlocality sequentially using only projective measurements
Bell nonlocality is a valuable resource in quantum information processing tasks. Scientists are interested in whether a single entangled state can generate a long sequence of nonlocal correlations. Previous work has accomplished sequential tripartite nonlocality sharing through unsharp measurements. In this paper, we investigate the sharing of tripartite nonlocality using only projective measurements and sharing classical randomness. For the generalized GHZ state, we have demonstrated that using unbiased measurement choices, two Charlies can share the standard tripartite nonlocality with a single Alice and a single Bob, while at most one Charlie can share the genuine tripartite nonlocality with a single Alice and a single Bob. However, with biased measurement choices, the number of Charlies sharing the genuine tripartite nonlocality can be increased to two. Nonetheless, we find that using biased measurements does not increase the number of sequential observers sharing the standard tripartite nonlocality. Moreover, we provide the feasible range of double violation for the parameters of the measurement combination probability with respect to the state.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.