涉及\(\Delta _{\lambda }\) -拉普拉斯算子的chen - simons - higgs系统解的有界性

IF 1.4 3区 数学 Q1 MATHEMATICS
Nguyen Van Biet, Anh Tuan Duong, Yen Thi Ngoc Ha
{"title":"涉及\\(\\Delta _{\\lambda }\\) -拉普拉斯算子的chen - simons - higgs系统解的有界性","authors":"Nguyen Van Biet,&nbsp;Anh Tuan Duong,&nbsp;Yen Thi Ngoc Ha","doi":"10.1007/s13324-024-01004-y","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this paper is to study the boundedness of solutions of the Chern-Simons-Higgs equation </p><div><div><span>$$\\begin{aligned} \\partial _tw-\\Delta _{\\lambda } w = \\left| w \\right| ^2 \\left( \\beta ^2-\\left| w \\right| ^2\\right) w-\\frac{1}{2}\\left( \\beta ^2-\\left| w \\right| ^2 \\right) ^2w \\text{ in } \\mathbb {R}\\times \\mathbb {R}^N \\end{aligned}$$</span></div></div><p>and system </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\partial _t u -\\Delta _\\lambda u = u^2\\left( 1-u^2-\\gamma v^2\\right) u-\\frac{1}{2}\\left( 1-u^2-\\gamma v^2 \\right) ^2u &amp; \\text { in } \\mathbb {R}\\times \\mathbb {R}^N, \\\\ \\partial _t v -\\Delta _\\lambda v = v^2\\left( 1-v^2-\\gamma u^2\\right) v-\\frac{1}{2}\\left( 1-v^2-\\gamma u^2 \\right) ^2v &amp; \\text { in }\\mathbb {R}\\times \\mathbb {R}^N,\\\\ \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>where <span>\\(\\gamma &gt;0\\)</span>, <span>\\(\\beta \\)</span> is a bounded continuous function and <span>\\(\\Delta _{\\lambda }\\)</span> is the strongly degenerate operator defined by </p><div><div><span>$$\\begin{aligned} \\Delta _{\\lambda }:=\\sum _{i=1}^N \\partial _{x_i}\\left( \\lambda _i^2\\partial _{x_i} \\right) . \\end{aligned}$$</span></div></div><p>Under some general hypotheses of <span>\\(\\lambda _i\\)</span>, we shall establish some boundedness properties of solutions of the equation and system above. Our result can be seen as an extension of that in [<i>Li, Yayun; Lei, Yutian, Boundedness for solutions of equations of the Chern-Simons-Higgs type. Appl. Math. Lett.88(2019), 8-12.</i>]. In addition, we provide a simple proof of the boundedness of solutions.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of solutions of Chern-Simons-Higgs systems involving the \\\\(\\\\Delta _{\\\\lambda }\\\\)-Laplacian\",\"authors\":\"Nguyen Van Biet,&nbsp;Anh Tuan Duong,&nbsp;Yen Thi Ngoc Ha\",\"doi\":\"10.1007/s13324-024-01004-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The purpose of this paper is to study the boundedness of solutions of the Chern-Simons-Higgs equation </p><div><div><span>$$\\\\begin{aligned} \\\\partial _tw-\\\\Delta _{\\\\lambda } w = \\\\left| w \\\\right| ^2 \\\\left( \\\\beta ^2-\\\\left| w \\\\right| ^2\\\\right) w-\\\\frac{1}{2}\\\\left( \\\\beta ^2-\\\\left| w \\\\right| ^2 \\\\right) ^2w \\\\text{ in } \\\\mathbb {R}\\\\times \\\\mathbb {R}^N \\\\end{aligned}$$</span></div></div><p>and system </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} \\\\partial _t u -\\\\Delta _\\\\lambda u = u^2\\\\left( 1-u^2-\\\\gamma v^2\\\\right) u-\\\\frac{1}{2}\\\\left( 1-u^2-\\\\gamma v^2 \\\\right) ^2u &amp; \\\\text { in } \\\\mathbb {R}\\\\times \\\\mathbb {R}^N, \\\\\\\\ \\\\partial _t v -\\\\Delta _\\\\lambda v = v^2\\\\left( 1-v^2-\\\\gamma u^2\\\\right) v-\\\\frac{1}{2}\\\\left( 1-v^2-\\\\gamma u^2 \\\\right) ^2v &amp; \\\\text { in }\\\\mathbb {R}\\\\times \\\\mathbb {R}^N,\\\\\\\\ \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>where <span>\\\\(\\\\gamma &gt;0\\\\)</span>, <span>\\\\(\\\\beta \\\\)</span> is a bounded continuous function and <span>\\\\(\\\\Delta _{\\\\lambda }\\\\)</span> is the strongly degenerate operator defined by </p><div><div><span>$$\\\\begin{aligned} \\\\Delta _{\\\\lambda }:=\\\\sum _{i=1}^N \\\\partial _{x_i}\\\\left( \\\\lambda _i^2\\\\partial _{x_i} \\\\right) . \\\\end{aligned}$$</span></div></div><p>Under some general hypotheses of <span>\\\\(\\\\lambda _i\\\\)</span>, we shall establish some boundedness properties of solutions of the equation and system above. Our result can be seen as an extension of that in [<i>Li, Yayun; Lei, Yutian, Boundedness for solutions of equations of the Chern-Simons-Higgs type. Appl. Math. Lett.88(2019), 8-12.</i>]. In addition, we provide a simple proof of the boundedness of solutions.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-01004-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-01004-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是研究Chern-Simons-Higgs方程$$\begin{aligned} \partial _tw-\Delta _{\lambda } w = \left| w \right| ^2 \left( \beta ^2-\left| w \right| ^2\right) w-\frac{1}{2}\left( \beta ^2-\left| w \right| ^2 \right) ^2w \text{ in } \mathbb {R}\times \mathbb {R}^N \end{aligned}$$和系统$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u -\Delta _\lambda u = u^2\left( 1-u^2-\gamma v^2\right) u-\frac{1}{2}\left( 1-u^2-\gamma v^2 \right) ^2u & \text { in } \mathbb {R}\times \mathbb {R}^N, \\ \partial _t v -\Delta _\lambda v = v^2\left( 1-v^2-\gamma u^2\right) v-\frac{1}{2}\left( 1-v^2-\gamma u^2 \right) ^2v & \text { in }\mathbb {R}\times \mathbb {R}^N,\\ \end{array}\right. } \end{aligned}$$的解的有界性,其中\(\gamma >0\), \(\beta \)是有界连续函数,\(\Delta _{\lambda }\)是$$\begin{aligned} \Delta _{\lambda }:=\sum _{i=1}^N \partial _{x_i}\left( \lambda _i^2\partial _{x_i} \right) . \end{aligned}$$定义的强退化算子,在\(\lambda _i\)的一些一般假设下,我们建立了上述方程和系统解的一些有界性性质。我们的结果可以看作是[Li, Yayun];雷玉田,chen - simons - higgs型方程解的有界性。苹果。数学。通讯,2019,(3):8-12。此外,我们还提供了解的有界性的一个简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of solutions of Chern-Simons-Higgs systems involving the \(\Delta _{\lambda }\)-Laplacian

The purpose of this paper is to study the boundedness of solutions of the Chern-Simons-Higgs equation

$$\begin{aligned} \partial _tw-\Delta _{\lambda } w = \left| w \right| ^2 \left( \beta ^2-\left| w \right| ^2\right) w-\frac{1}{2}\left( \beta ^2-\left| w \right| ^2 \right) ^2w \text{ in } \mathbb {R}\times \mathbb {R}^N \end{aligned}$$

and system

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t u -\Delta _\lambda u = u^2\left( 1-u^2-\gamma v^2\right) u-\frac{1}{2}\left( 1-u^2-\gamma v^2 \right) ^2u & \text { in } \mathbb {R}\times \mathbb {R}^N, \\ \partial _t v -\Delta _\lambda v = v^2\left( 1-v^2-\gamma u^2\right) v-\frac{1}{2}\left( 1-v^2-\gamma u^2 \right) ^2v & \text { in }\mathbb {R}\times \mathbb {R}^N,\\ \end{array}\right. } \end{aligned}$$

where \(\gamma >0\), \(\beta \) is a bounded continuous function and \(\Delta _{\lambda }\) is the strongly degenerate operator defined by

$$\begin{aligned} \Delta _{\lambda }:=\sum _{i=1}^N \partial _{x_i}\left( \lambda _i^2\partial _{x_i} \right) . \end{aligned}$$

Under some general hypotheses of \(\lambda _i\), we shall establish some boundedness properties of solutions of the equation and system above. Our result can be seen as an extension of that in [Li, Yayun; Lei, Yutian, Boundedness for solutions of equations of the Chern-Simons-Higgs type. Appl. Math. Lett.88(2019), 8-12.]. In addition, we provide a simple proof of the boundedness of solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信